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ABSTRACT  

The Internet of Things (IoT) and the smart health devices have enhanced healthcare platforms by enabling the 

remote monitoring of patients' health. Given the unpredictable rise in the diabetes patients number, it is crucial to 

regularly assess their health conditions to prevent serious illnesses. However, the transmission of a massive volume 

of sensitive health data brings significant IoT data security challenges. This paper introduces a secure and remote 

system for diabetes monitoring that employs the Advanced Encryption Standard (AES) to protect patients' sensitive 

data on cloud-based IoT platforms. In this model, machine learning (ML) methods analyse health data collected by 

smart health IoT devices to predict critical situations and determine patients' health statuses. The results show that 

the AES method provides the fastest encryption and decryption times for data files sent from IoT devices to cloud 

storage. Additionally, the Support Vector Machine (SVM) classification method demonstrates high performance, 

with an accuracy of 96%, precision of 92.4%, F-score of 95.3%, and recall of 94.3%. Based on these results, the 

proposed system successfully establishes a efficient and secure platform for health monitoring. 

 

Keywords: Internet of Things, healthcare, cloud computing, machine learning, classification, security. 

1. Introduction 

    Recent advancements in the Internet of Things (IoT) and sensor technologies linked to health wearables have 

significantly enhanced patient care through intelligent and remote health monitoring systems (Mamdiwar et al. 

2021). Integrating IoT with cloud technology offers numerous benefits, such as robust processing capabilities, 

effective resource allocation, and improved user mobility in monitoring models. In modern cloud-based IoT 

healthcare systems, patient biological data is transmitted, stored, and shared, allowing for insights to be gathered 

from any location at any time (El Kafhali and El Mir 2023).  However, the transfer and storage of medical data in 

the cloud raise critical privacy and security concerns. Medical data is in particular sensitive, and any alterations 

can lead to errors in medical diagnoses (Saha and Debnath 2022). Diabetes is a rapidly increasing metabolic disease 

and a leading cause of death worldwide. Insufficient insulin production by pancreatic cells leads to elevated blood 

sugar levels, which can severely affect the eyes, various organs, heart, kidneys, and nerves (ElSayed et al. 2023). 

Additionally, modern studies show that diabetes currently impacts around half a billion people globally, with 

projections suggesting an increase of 25% to 51% between 2030 and 2045 (Fitzmaurice et al. 2017)(Saeedi et al. 

2019). While there is no permanent cure for diabetes, early diagnosis allows for effective management and control. 

In such cases, computer-aided technologies are invaluable, enabling precise medical decisions and timely, essential 

treatments (Hennebelle, Materwala, and Ismail 2023).  Consequently, machine learning (ML) advancements have 

made automated diabetes diagnosis and detection more successful and feasible compared to traditional manual 

methods. Providers of healthcare can leverage these diagnoses to customize interventions, suggest lifestyle 

modifications, and start early therapy plans (Dasari, Poonguzhali, and Rayudu 2023). Cryptographic mechanisms 

are utilized to encrypt collected IoT data before it is stored in the cloud , ensuring that  the unauthorized users cannot 

access the data (Babrahem and Monowar 2021). These techniques ensure the availability, integrity, and 

confidentiality of data by converting it into an incomprehensible form for unauthorized users. Cryptographic 
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techniques involve two primary methods: asymmetric and symmetric encryption. Asymmetric encryption utilizes 

a public key for encryption and a private key for decryption, whereas symmetric encryption employs a single private 

key for both encryption and decryption (Agarwal, Kaushal, and Chouhan 2020). This study envisions a non-

invasive strategy for early-stage diabetes patients, employing ML approaches within a secure remote patients' 

health monitoring environment that uses both cloud and IoT technologies. The essential contributions of this paper 

are as follows: 

 

• Propose a novel cryptographic method using Advanced Encryption Standard (AES) to enhance the security of 

healthcare data during cloud storage transmission.  

• Describe a disease prediction methodology utilizing various ML techniques to evaluate classification outcomes 

for early detection of diabetes mellitus.  

• Show that the proposed method exceeds current diabetes monitoring models in terms of privacy and security. 

 

 

2. Related Work  
 

     In recent times, there has been notable progress in the smart technologies within the healthcare sector. This 

techniques has gained widespread adoption and proven effective across various healthcare applications, with a 

particular focus on medical cardiology. The substantial increase in medical data has provided researchers with an 

unparalleled opportunity to create and evaluate novel algorithms in this domain. Princy et al. (Princy et al. 2020)  

diagnosed diabetes and breast cancer was carried out by integrating adaptability features into SVM. The objective 

was to provide a swift, automated, and flexible diagnostic approach through the use of adaptive SVM. To enhance 

performance, modifications were made to the bias value in the conventional SVM. Arumugam et al.(Arumugam et 

al. 2023) Proposed a refined DT model to achieve optimal performance in predicting the likelihood of heart disease 

in diabetic patients, as it consistently demonstrated superior performance compared to NB and SVM models. Orabi 

et al. (Orabi, Kamal, and Rabah 2016) used The DT algorithm to suggest an ML-based diabetes prediction system. 

Their main priority was to determine if the candidates had diabetes at that age. Sisodia et al. (Sisodia and Sisodia 

2018) proposed diabetes prediction utilizing classification techniques such as NB, SVM, and DT. In this study the 

accuracy was 76.30%. Hasan et al. (Hasan et al. 2020) used multiple ML classifiers, including RF, DT,  NB, KNN, 

and XGBoost. They created a weighted ensemble machine learning model that achieves the highest possible AUC 

value.  Ramesh et al.(Ramesh, Aburukba, and Sagahyroon 2021) developed a comprehensive healthcare monitoring 

framework to effectively manage diabetes. The accuracy was 83.2%, and the sensitivity was 87.2%.  Hrimov et 

al.(Hrimov et al. 2021) proposed a diabetes classification technique based on backward elimination and SVM. They 

attained an overall accuracy of 85.71%.  

Table 1. Comparing factors in the proposed model with the previous works 

Reference Applied 

technology 

Healthcare System Security AES Encryption  

(Arumugam et al. 2023) Cloud-based IoT Heart disease detection 𝑥 𝑥 

(Kumar et al. 2018) Cloud-based IoT Diabetes Detection 𝑥 𝑥 

(Ahmed et al. 2018) Cloud Heart disease detection 𝑥 𝑥 

(Khanna et al. 2023) IoT Heart disease detection 𝑥 𝑥 

(Deepika et al. 2021) Cloud-based IoT Medical image diagnosis √ 𝑥 

(Akhbarifar et al. 2020) Cloud-based IoT Diabetes and heart prediction  √ 𝑥 

(Hosseinzadeh et al. 

2021) 

Cloud-based IoT chronic kidney disease 𝑥 𝑥 

(Nigar et al. 2023) Cloud-based IoT Identification of six key 

chronic diseases 

𝑥 𝑥 

(Siddiqui et al. 2023) IoT Covid-19 detection 𝑥 𝑥 

(Stergiou et al. 2023) Cloud-based IoT Identify harmful forms of 

viruses 
√ 𝑥 

(Asghari et al. 2019) Cloud-based IoT Predicting a combination of 

diseases 
√ 𝑥 

proposed system Cloud-based IoT Diabetes detection √ √ 
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     In the reviewed literature, the security issues were considered in  (Deepika et al. 2021), (Akhbarifar et al. 

2020),(Stergiou et al. 2023),(Asghari et al. 2019) while in others were not as focused. Compared to the reviewed 

studies, we aim to provide a secure remote health monitoring model in a IoT-based cloud framework utilizing ML 

methods for early ddiagnosis of diseases, which employs an AES encryption method and is a appropriate solution 

for constrained health IoT resources, which has not been used in previous works. As a result, our suggested model's 

key addition in comparison to earlier research is that it considers confidentiality and security problems in an 

operational way while taking into account IoT resource restrictions. To demonstrate this benefit, certain 

comparative elements are evaluated in Table 1, including the following: presenting applicable technologies, 

healthcare systems, security challenges, and the use of encryption methods in the researched studies vs 

our suggested framework. As indicated in Table 1, our contribution extends beyond the introduction of a cloud-

based IoT health monitoring model; it includes the incorporation of a hybrid data encryption method, a feature that 

was not taken into account in other studies. 

 

3. Methodology 

 

3.1. Layers of the IoT environment 

  

      In the IoT context, architecture refers to the framework that outlines both the hardware and software 

components of the system, the standard organization and configuration of the network, as well as the operational 

methods and data formats to be employed. The architecture of IoT systems varies depending on the specific 

application, as each has its own unique requirements and implementation needs(Balaji, Nathani, and Santhakumar 

2019). Figure 1 illustrates the four-layer architecture that utilized for the proposed system. 

 

 

Figure 1: Four-layer system architecture 

The system’s four-layer architecture includes: 

A. Application Layer: This is the user interface layer, responsible for executing user commands and providing 

information and notifications. 

B. Data Processing Layer: This layer handles the processing and analysis of data collected by the perception 

layer, using advanced analytics to make informed decisions. 

C. Network Layer: This layer manages the data transmission from sensors and directs commands to actuators. 

It also links the system with other devices such as smartphones. 

D. Perception Layer: This physical layer involves sensors collecting data and actuators interacting with the 

environment. 

 

3.2. Proposed system architecture 

Healthcare monitoring systems present significant opportunities to revolutionize traditional patient 

management. These systems help medical centers enhance patient treatment, reduce healthcare costs, and facilitate 

remote health monitoring. The architecture of these systems leverages advanced technologies, including IoT, 

embedded systems, smartphone applications, and programmable development boards. Figure 2 demonstrates the 

structure and interconnections of the system components. 
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Figure 2: The Proposed Health Condition Monitoring in a cloud-based IoT platform 

3.2.1. Biomedical sensors 

    The application of medical sensors is rapidly increasing. These sensors play a crucial role in medical diagnosis 

by collecting data related to patients’ medical conditions, thereby enhancing their quality of life. There are four 

main types of sensors: off-body, environmental, implantable, and wearable. In the proposed system, the sensing 

section is tasked with measuring various physiological indicators of patients, such as heart rate, body temperature, 

and blood oxygen levels. Additionally, it includes several sensors that gather data about the patient’s environment. 

 

Algorithm 1. outlines the procedures for gathering the IoT data for the disease prediction process. 

Algorithm 1: Data Acquiring 

Input: IoT medical device sensor data  

Output: Required medical data 

1. Enter the IoT device data including the identification data and clinical data of the patient.  

2. Collect the IoT medical device sensor data by sensors. 

3. Transfer all the Acquired medical data to the algorithm for encryption process. 

 

3.2.2. Providing the data security in the proposed model  

➢ Advanced Encryption Standard Algorithm (AES) 

AES is a commonly used symmetric encryption method. It is a symmetric key algorithm, which means it uses the 

same key for encryption and decryption. The U.S. National Institute of Standards and Technology (NIST) adopted 

AES as a standard in 2001, replacing the previous Data Encryption Standard (Joan and Vincent 2002). 

Key Sizes: AES supports key sizes of 256, 192, and 128 bits.  larger size of key, stronger the encryption, but it also 

increases the computational complexity. 

Block Size: AES operates on fixed-size blocks of data. The block size for AES is 128 bits. 

Rounds: AES uses a fixed number of rounds for processing data, with the rounds number dependent on the key 

size. For example, 14 rounds for 256-bit keys, 12 rounds for 192-bit keys, and 10 rounds for 128-bit keys. 

Symmetric Cryptography: As a symmetric algorithm, AES employs the same key for both decryption and 

encryption. This contrasts with asymmetric (or public-key) cryptography, where separate keys are utilized for 

encryption and decryption. 

Security:  AES is considered highly secure and is widely adopted for securing sensitive data. The security strength 

of AES is directly related to the key size, with longer keys providing a higher level of security. 
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AES algorithm consists of several rounds, each involving Shift Rows, Sub Bytes, Add Round Key, and Mix 

Columns functions, except for the final round. In the Sub Bytes step, a linear substitution is performed for each 

byte using an 8-bit S-box derived from the multiplicative inverse over the finite Galois Field GF (28), This S-box 

ensures nonlinearity in the cipher system, preventing fixed-point and opposite-fixed-point attacks (Abdullah 2017). 

The ShiftRows step cyclically shifts the bytes in every row, with the first row remaining unaffected. The second 

row shifts one byte to the left, and the third and fourth rows shift by offsets of two and three bytes, respectively. 

This pattern is consistent for 192-bit or 128-bit blocks. In 256-bit blocks, the first row remains unchanged, and the 

second, third, and fourth rows shift by 1, 3, and 4 bytes, respectively. The MixColumns step involves merging the 

four bytes of each column using a linear invertible transformation. This function treats each column as a polynomial 

over GF (28), and multiplies it with a fixed polynomial, providing diffusion in the cipher system. The MixColumns 

function, combined with ShiftRows, contributes to the overall security of the AES algorithm. The MixColumns 

step can alternatively be viewed as the multiplication by a specific matrix, as illustrated in Figure 5. 

 

𝑐(𝑥) = 3𝑥3 + 𝑥2 + 𝑥 + 2 (1) 
 

 

 

 
Figure 3: SubBytes step Figure 4: ShiftRows step Figure 5: MixColumns step (Siam et 

al. 2021) 

 
    The depicted process illustrates the secure handling of a user's data request within the server infrastructure.  
Figure 6 illustrates the user and data stored on the cloud server, depicting how a user's data request is processed by 

the server and how the data is accessed securely. By meticulously following these steps and incorporating robust 

security measures, the depicted process ensures that user data requests are processed securely, maintaining the 

confidentiality, integrity, and availability of sensitive information within the healthcare system. 

 

 

Figure 6: Secure IoT data stored on cloud server 

 

    Applying AES encryption for securing communication between IoT devices and cloud computing involves 

several key steps. AES is a symmetric encryption algorithm, meaning the same key is used for both encryption and 

decryption. By following these steps, AES encryption can be effectively applied to secure communication between 

IoT devices and cloud computing platforms, protecting sensitive data from unauthorized access and ensuring the 

integrity of the transmitted information. 
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 1. Key Generation and Management 

    Generate a strong, random cryptographic key. The key length can be 128, 192, or 256 bits, with 256 bits 

providing the highest level of security. The key should be generated using a secure random number generator to 

ensure that it is unpredictable. Store the encryption key securely in both the IoT device and the cloud. This might 

involve using a secure hardware module, such as a Trusted Platform Module (TPM) or a Hardware Security Module 

(HSM), to protect the key from unauthorized access. Implement key rotation policies to periodically change the 

encryption key, reducing the risk of key compromise over time. Use a key management service in the cloud to 

handle key generation, storage, and rotation securely. 

2. Data Encryption on the IoT Device 

   The IoT device collects data from sensors or other inputs that need to be securely transmitted to the cloud. Before 

transmitting the collected data, the IoT device encrypts it using the AES encryption algorithm. 

3. Secure Data Transmission to the Cloud 

   Establish a secure communication channel between the IoT device and the cloud using protocols like TLS 

(Transport Layer Security). TLS provides an additional layer of security, ensuring that the encrypted data is not 

tampered with or intercepted during transmission. Ensure that mutual authentication is in place so that both the IoT 

device and the cloud can verify each other’s identity before transmitting data. The encrypted data, along with any 

necessary metadata, is transmitted securely to the cloud over the established secure communication channel. 

 

4. Data Decryption in the Cloud 

    The cloud server receives the encrypted data from IoT device. The server of cloud uses the same AES key and 

the corresponding block cipher mode (along with the metadata like IV or nonce) to decrypt the data. Ensure that 

the decryption process is performed in a secure environment, such as within an HSM, to protect the decryption key 

and the plaintext data. 

 

5. Secure Data Processing and Storage in the Cloud 

  Once decrypted, the data can be processed as needed by cloud-based applications or services. However, to 

maintain security, consider processing sensitive data in memory or within a secure environment that limits exposure 

to unauthorized entities. If the decrypted data needs to be stored, apply additional encryption for data at rest. This 

could involve encrypting the data again using a different key, ensuring that even if storage systems are 

compromised, the data remains secure. Use access control mechanisms to restrict who can access the decrypted 

data, ensuring that only authorized users or services have access. 

 

6. Key Rotation and Revocation 

    Periodically rotate encryption keys to minimize the risk of key compromise. This involves generating new keys 

and securely distributing them to the IoT devices and cloud systems.  Ensure that both old and new keys are handled 

correctly during the rotation process to avoid data access issues. Implement mechanisms for key revocation in case 

an encryption key is compromised. Once a key is revoked, any data encrypted with that key should be re-encrypted 

with a new key. 

 

3.2.3. The architecture of the medical data classification component in the proposed healthcare system 

   ML methods are employed to classify patients as sick or healthy based on their vital signs. Figure 7 depicts the 

proposed block diagram for creating the ML model for diabetes prediction, outlining the approach used to update 

or train the model and forecast the occurrence of diabetes. Below is an explanation of the workflow for training, 

updating, and predicting in detail. 
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Figure 7: Framework for ML model 

a) Dataset Pre-processing  

     The pre-processing stage of the proposed algorithm involves outlier rejection (n), and imputing missing values 

(Q). An outlier is a noticing that significantly deviates from other data points in a dataset (Hamid et al. 2024). Since 

algorithms of classification are sensitive to data distribution, it is essential to exclude such deviations. We used the 

Interquartile Range (IQR) method to remove outliers, with the mathematical formula for this process provided in 

equation (1). 

p(a) = {
  𝑎                    𝑖𝑓 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅 ≤ 𝑎 ≤ 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅
 𝑟𝑒𝑗𝑒𝑐𝑡                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

 
(1) 

Here, 𝑎 represents the dimensional space of m feature vector instances, where 𝑎 ∈ 𝑹𝒎. Given that 𝑄1, 𝑄3, and the 

𝐼𝑄𝑅 belong to 𝑹𝒎, Q1 represents the first quartile, 𝑄3 corresponds to the third quartile, and the 𝐼𝑄𝑅 denotes the 

interquartile range of the features used. 

 
    After outliers were removed, the attributes underwent further processing to address any missing or null values 

(Fan et al. 2021). Null or missing values can negatively affect the accuracy of classifier predictions. In the proposed 

framework, rather than discarding instances with missing values, imputation was performed using the mean values 

of the features, as shown in equation (2). This approach is advantageous because it enables the imputation of 

continuous data without creating additional outliers. 

𝑄(𝑓) = {  𝑚𝑒𝑎𝑛(𝑓) ,   𝑖𝑓 𝑓 = 𝑛𝑢𝑙𝑙/𝑚𝑖𝑠𝑠𝑒𝑑
𝑓 ,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

 (2) 

where 𝑓 represents the frequency of the feature vector's occurrences in 𝑛-dimensional space, 𝑓 ∈ 𝑅𝑚. 

 

b) K-Fold Cross-Validation (KCV) 

           KCV is a commonly employed method for selecting models and estimating the error of classifiers (Arlot 

and Celisse 2010). Figure 8 illustrates the visual representation of the data splitting technique utilized in this study, 

which follows a 5-fold cross-validation approach. The dataset was separated into K folds, and the models were 

trained using the K-1 folds. The optimal hyperparameters and unreleased testing data were used (K times) To 

evaluate the models' performance through the outermost loop. Furthermore, to maintain a consistent percentage of 

samples in each class, KCV has been employed as the dataset consists of both positive and negative samples. 

Equation (3) was used to generate the final evaluation metrics (Hasan et al. 2020). 

M =
1

k
× ∑ Pn

k

n=1

± √∑ ( pn − p̅ )k
n=1

2

k − 1
 

(3) 

In the above equation, M denotes the final performance metric of the classifiers, K represents the number of folds 

utilized in the evaluation, and Pn ∈ R, where n = 1, 2, . . ., K, signifies the efficiency metric for each fold. 
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Figure 8: 5-cross-fold validation of the applied dataset 

4. Performance Evaluation 

 

    The effectiveness of the proposed security-enhanced IoT-based cloud system is validated through performance 

evaluation metrics, including encryption time, decryption time, accuracy, specificity, sensitivity, precision, recall, 

and error rate. The efficiency of this secured method is also compared with several traditional approaches. 

4.1 Dataset Description 

    The primary dataset used in this study was the Pima Indian Diabetes Dataset (PIDD), obtained from the standard 

dataset repository at the University of California, Irvine (UCI). The PIDD includes archives from 768 diabetic 

patients and contains 8 unique features. For analysis, the dataset is split into two groups: 500 non-diabetic 

individuals labeled as (0) and 268 diabetic patients labeled as (1). Table 2 outlines the PIDD's features and offers 

a brief statistics overview. Furthermore, it depicts a sample of the obtained occurrences in the PIDD.  

Table 2 A PIDD statistics summary 

No. Features Descriptions Min.  Max. Mean ± Std 

F1 Pregnancies  Number of times pregnant  0  17 3.85 ± 3.37 

F2 Glucose Plasma glucose 

concentration 2 hours in an 

oral glucose tolerance test 

0 199 120.9 ± 31.97 

F3 Blood Pressure Diastolic blood pressure 0 122 69.11 ± 19.36 

F4 Skin Thickness Triceps skin fold thickness 0 99 20.54 ± 15.95 

F5 Insulin 2-h serum insulin 0 846 79.81 ± 115.24 

F6 BMI Body mass index (weight in 

kg/(height in m)2 ) 

0 67.1 32.00 ± 7.88 

F7 Diabetes Pedigree 

Function 

Diabetes pedigree function 0.08  2.42 0.47 ± 0.33 

F8 Age  Age of person 21  81 33.24 ± 11.76 

 

4.2 Encryption Time 

   The time required to encrypt plaintext into ciphertext using the proposed AES is measured and compared with 

the existing techniques of DES, Blowfish, and ECC, as illustrated in Figure 9. 

 

4.3 Decryption Time 

     As a result, the time required to decrypt the ciphered text back into plain text is measured for the proposed AES 

method and compared with existing techniques such as DES, Blowfish, and ECC, as illustrated in Figure 10. 
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Figure 9: Encryption time comparison. Figure 10: Decryption time comparison. 

 
 

4.4 Comparisons of the proposed Cryptography algorithm with different approaches 

    Various techniques were assessed for their space optimization and functionality within cloud-IoT environments. 

Table 3 presents a various algorithms comparison based on different parameters. The performance of the 

cryptographic algorithms was evaluated by examining rounds, the number of keys used, block size, and key length. 

 Table 3. Cryptography Algorithm Comparison. 

4.5 classification results  

    The metrics utilized for comparison include accuracy, precision, f-score, and recall. Before delving into the 

performance measures, Table 4 presents the concept of the confusion matrix. 

 

Table 4. Confusion Matrix 

                                                    Actual positive                                            Actual negative  

Predicted positive                     True Positive (TP)                                          False Positive(FP) 

 

Predictive negative                    False Negative (FN)                                     True Negative(TN) 

 

   Accuracy represents the percentage of instances that are correctly classified. It is one of the most widely used 

metrics for evaluating classification performance, with higher values (closer to 100) indicating better performance. 

Accuracy =
 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(4) 

 Blowfish DES ECC RSA AES 

Cipher type Symmetric 

 

Symmetric 

 

Asymmetric 

 

Asymmetric 

 

Symmetric 

 

No. of key 1 1 2 2 1 

Key length 32 to 448bits 56bits 160 bits 1024 bits 128,192,256 

bits 

Rounds 16 16 16 1 10,12,14 

Block size 64bits 64bits 64bits Min 512 bits 128bits 
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    Precision measures the proportion of true positive results among all the positive results predicted by the model. 

It indicates how many of the predicted positive instances are actually correct. High precision means that the model 

has a low false positive rate. 

Precision=
 𝑇𝑁

𝑇𝑁+𝐹𝑃
 

(5) 

 

Recall, also known as sensitivity or true positive rate, is mathematically defined as: 

recal =
 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6) 

 

The F-score evaluates the accuracy of the testing process by averaging both precision and recall. It is represented 

in Equation (7). 

F − score =
 2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁
 

(7) 

 

    To classify the instances of the disease, multiple experiments were conducted using different classification 

algorithms including DT, SVM, KNN, and RF. A performance comparison was carried out using various metrics 

such as accuracy, precision, recall, and F-score. The performance evaluation based on these metrics can be found 

in Table 5, verifying the performance examination. The outcomes for selecting the optimal pre-processing and ML 

model are presented in Table 5. This table displays the accuracy, precision, recall, and F-score values, allowing for 

comparison among the different approaches. The summary outlines each model's ability to achieve the highest 

accuracy when following the proposed pipeline. It has been observed that all classifiers achieve their optimal 

performance when outlier rejection (P), filling missing values (Q), and correlation-based feature selection 

techniques (CRB) are applied to the PIDD. Each classifier demonstrates its highest performance when these pre-

processing steps are employed. The two experiments, as shown in Table 5, show that The Accuracy of the SVM, 

DT, KNN, and RF has improved by 29.3%, 12.9%,17%, 20.2%, and 21.4% respectively when P, Q, and CRB.  

 

Table 5. The performance of the proposed approach is compared to existing approaches, and it is observed that the 

folding technique yields the best result among all the approaches. 

 Classifier Accuracy Precision F-score Recall 

 DT 0.747 0.625 0.730 0.727 

 RF 0.721 0.607 0.659 0.618 

Without pre-

processing KNN 0.695 0.583 0.759 0.509 

 SVM 0.667 0.655 0.735 0.76 

 DT 0.876 0.853 0.830 0.891 

 RF 0.935 0.915 0.926 0.930 

P+Q+ CRB 

(n-attribute=6) 

proposed KNN 

 

0.897 

 0.886 

0.896 

0.902 

 

 SVM 0.960 0.924 0.953 0.943 
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    Figure 11, Figure 12, Figure 13, Figure 14 demonstrate The performance of multiple graphical representation 

was assessed to identify the optimal ML models for proposed approach with the highest accuracy, precision, recall, 

and f-score. The corresponding best-performing models are presented in Table 5. 

 

 
Figure 11 Accuracy representation for proposed ML models 

 
Figure 12 Precision representation for proposed ML models 

 
Figure 14  Recall representation for proposed ML models 

 

5. Conclusion 

 

    Given the significant rise in the number of diabetics, there is an increasing need for IoT-based cloud platforms 

for disease prediction systems and healthcare monitoring. Ensuring patient privacy and securing sensitive 

healthcare data are major challenges. This study introduces an efficient approach that prioritizes patients' data 

privacy while utilizing medical data for disease detection within the recent healthcare environment. The system 

employs the AES technique for encryption. To assess the system's effectiveness, analyses were performed on both 

classification performance and secure transmission of data. The AES algorithm’s performance was compared with 

conventional encryption algorithms like ECC, Blowfish, and DES, focusing on decryption and encryption times. 

Additionally, the SVM classifier’s performance was assessed against classifiers such as KNN, DT, and RF. The 

SVM classifier demonstrated superior performance with 96% accuracy, 92.4% precision, 94.3% recall, and a 95.3% 

F-score. The results indicate that The suggested method surpasses current systems in predicting diseases with 

greater accuracy while also improving security measures. Future research could focus on integrating more 

generalized approaches to manage a wider range of datasets, extending beyond those gathered by IoT devices. 

Additionally, investigating deep learning methods could enhance disease prediction accuracy while ensuring strong 

privacy and security protections. 

 

 

 

 

 

 

 

Figure 13 F-score representation for proposed ML models 
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