

Delta University Scientific Journal

Journal home page: https://dusj.journals.ekb.eg

Variation of the Raman Amplifier Gain for 48 Channels (100 GHz, Wavelengths from 1529.55 to 1567.13 nm)

Adel Zaghloul¹, Ahmed A. Abdullah², B. M. El-den³

¹ Delta University for Science and Technology – College of Engineering – Dept. of Electronics and Communications, Gamasa city, Mansoura, Egypt, (Total mandate to work from College of Engineering - Zagazig University, Egypt, Zagazig City) Email: adel6730101@yahoo.com; ² Dept. of Electronics and Communications Engineering, Faculty of Engineering, Delta University for Science& Technology, Gamasa City 35712, Dakhliya, Egypt. Email: Ahmed.abdelaleem@deltauniv.edu.eg

³ Dept. of Electronics and Communications Engineering, Faculty of Engineering, Delta University for Science& Technology, Gamasa City 35712, Dakhliya, Egypt. Email: <u>Basant.Ibrahim@deltauniv.edu.eg</u>

Correspondence: [Ahmed Abd El-Aleem]; [Gamasa, post number 35712]; Tel [+20100 ٤ ٥٣٦٩١ ·]; <u>Email: Ahmed.abdelaleem@deltauniv.edu.eg</u>

ABSTRACT

The performance analysis of a Raman scattering amplifier based on Germania-doped silica fiber shows that the gain (G) of each channel depends significantly on the channel central wavelength (λ_{ch}), the pump wavelength (λ_p), and the Raman amplifier length (L). The gain for each channel is influenced by Raman amplifier parameters such as the Raman gain coefficient (g_r) and the attenuation coefficient (α), both of which are functions of the channel wavelength. Additionally, the refractive index of the fiber material is affected by λ_{ch} .

The final gain for the three types of pumps is evaluated based on published references. The attenuation of the pump signal remains constant when the pump wavelength (λ_p) is constant. However, the attenuation of the channel signals decreases with increasing wavelength up to 1550 nm and then increases for wavelengths greater than 1550 nm. In this wavelength range, the Raman gain coefficient (g_{rxT}) decreases. The final gain is independent of the type of pump (forward, backward, or dual).

For instance, with a core radius (a = 3.5μ m), a Germania dopant ratio (x = 3%), $\lambda_p = 1.48 \mu$ m, a temperature of 300 K, and L = 50 km, the gain for channel 1 (G_{ch1}) is 622.7, while for channel 48 (G_{ch48}) it is 503.7, resulting in a variation rate (R_v) of -19.11%. At L = 100 km, the gain for channel 1 (G_{ch1}) is 112.81, while for channel 48 (G_{ch48}) it is 91.53, yielding a variation rate (R_v) of -18.86%. The gain decreases with increasing L. The maximum gain occurs with L equals the optimum Raman amplifier length (L_{Gpeak}). As the value of λ_{ch} increases, the gain of each channel in the 48-channel WDM system (for wavelengths ranging from 1529.55 to 1567.13 nm) decreases.

The channel bandwidth (ΔF) also decreases with increasing λ_{ch} . The bandwidth decreases from $\Delta F_{ch1} = 99.9694$ GHz to $\Delta F_{ch48} = 95.3282$ GHz.

It is essential to consider the dependence of the channel gain on the central wavelength of the channel when designing optical communication links.

Keywords: Raman scattering amplifier, Germania-doped silica fiber, Channel gain, Attenuation coefficient, Wavelength dependency and WDM

1. Introduction

Raman amplifier is widely used with optical telecommunication systems [1-3]. Raman gain occurs by transfer of power from optical pump (which has power, P_p , at wavelength, λ_p) to the optical signal (which has power, P_s , at wavelength, λ_s) with condition $\lambda_p < \lambda_s$ [4].

The minimum attenuation coefficient of Germania doped silica fiber (α_{min} occurs at $\lambda_{\alpha min}$ around 1.55µm). As λ_p increases, the value of α_p decreasing because of λ_p usually less than $\lambda_{\alpha min}$.

The net Raman amplifier gain (G) decreases exponentially with the product of $\alpha_s L$ (where α_s is the attenuation coefficient for signal at λ_s and L is the amplifier length). But G increases exponentially with the product of $g_{rxT} L_{eff}$ (where g_{rxT} is the Raman scattering gain and L_{eff} is the effective Raman scattering length) until the gain saturation (G_{sat}).

As the effective fiber core area (A_{eff}) increases (A_{eff} increases with λ_s and λ_p) the value of g_{rxT} decreases.

The final Raman gain with the three kinds of pumps (forward pump, G_F , backward pump, G_B , and dual pumps, G_D) are equally.

Within the wavelength λ =1527.55 to 1567.13 nm, as the channel wavelength increases, the final output gain decreases. Therefore, there is a variation of the output gain of the input channels.

The power transferred between lower signal wavelengths to higher signal wavelengths due to the stimulated Raman scattering is neglected.

In this study, the general gain formula of the Raman amplifier is analyzed as a function of the structure parameters (Germania rato,x, and L) and the operating parameters (λ_s , λ_p , T, P_P and P_s).

The simulation results are done to study the variation of output gain from channel to another for 48 channels (100 GHz) WDM (0.8 nm band of each channel). The simulation results is done with $T=T_0=300$ °K, fiber radius, $a=3.5\mu m$, Germania ratio, x=0.03, amplifier length, L=100 km and L=50km (optimum Raman amplifier length).

2. Mathematical Analysis

2.1. Gain of Raman amplifier (G)

From the propagation coupled equations [16] between the optical power of input signal (P_s) and the optical power of pump (P_p) and with assume that, the pump depletion $\{-\frac{\lambda_s}{\lambda_p}g_{rxT}P_s(z) P_p(z)\}$ [5] is very small, the signal power distribution, P_s(z), of dual pumps (general formula) is derived as;

$$P_{sD}(z) = P_{s0} e^{-\alpha_s z} * Exp\left\{ \left[\frac{g_{rxT} P_p (1 - e^{-\alpha_p z})}{\alpha_p} \right] [S + (1 - S) e^{-\alpha_p (L - z)}] \right\}$$
(1)

Where, P_{s0} is the optical input signal at z=0, α_s (km⁻¹) is the attenuation coefficient for optical signal at λ_s , P_p is the summation of input pumps power (forward pump, P_{pF} , at z=0 (in z-direction) with wavelength, λ_p , and backward pump, P_{pB} , at z=L (in negative z-direction), with the same wavelength, λ_p ,), α_p (km⁻¹) is the attenuation coefficient for optical pump at λ_p , g_{rxT} is the Raman coefficient (W⁻¹ km⁻¹), S ($0 \le S \le 1$) is the ratio of pump power at z=0 to the total pump power, therefore P_{pF} = S P_p and P_{pB} = (1-S) P_p and L is the amplifier length.

Notice that; if S=1 the amplifier becomes forward pump but if S=0 the amplifier becomes backward pump. Therefore Eq. 1 is used for the three kinds of pumps (forward, backward and

From Eq.1, the Raman amplifier gain, $G_D(z)$ is;

$$G_{\rm D}(z) = \frac{P_{SD}(z)}{P_{SD}(0)} = e^{-\alpha_{\rm S} \, z} * \operatorname{Exp}\left\{ \left[\frac{g_{\rm rxT} \, P_{\rm p} \left(\, 1 - e^{-\alpha_{\rm p} z} \right)}{\alpha_{\rm p}} \right] \left[\, S + (1 - S) e^{-\alpha_{\rm p} (L - z)} \right] \right\}$$
(2)

From Eq.2, the final gain G_D at z=L

$$G_{\rm D} = e^{-\alpha_{\rm S}L} \operatorname{Exp}\{g_{\rm rxT}P_{\rm p}\,L_{\rm eff}\}$$
(3)

Therefore the final gain (G, gain at z = L) is independent upon the power ratio (S) and so, the final gain of forward pump (G_F), backward pump (G_B) and dual pump (G_D) are equally (G=G_D=G_F=G_B). and from Eq.3;

$$G = -4.343 \,\alpha_s \,L + 4.343 \,g_{rxT} \,L_{eff} \,P_p \tag{4}$$

As explained in [6]

From Eq.3, gain depends upon α_s , α_p (through L_{eff}), length (L), pump power (P_p) and grxt. And so these parameters are studied as;

2.1.1 The attenuation coefficients (as and αp)

The attenuation coefficient of Germania doped silica fiber (α_1) is a function of λ , Germania ratio (x) and T as defined in [7];

$$\alpha_1 = 0.003 + \frac{0.75 + 66\,\Delta}{\lambda^4} \frac{T}{T_0} + 7.81 * 10^{11} e^{-48.48/\lambda} + \frac{1.542\,x\,e^{4.63/\lambda}}{60+46.6\,x} \qquad (db/km)$$
(5)

Where Δ is the relative refractive index difference $\{2\Delta = 1 - n^2_{clad}/n^2_{core}$ [8]} and T_o is the reference temperature (T_o= 300°K).

Notice that, α (in km⁻¹) = 0.2303 α_1 (where α_1 in db/km).

For Germania doped silica fiber, there is minimum value of attenuation coefficient (α_{min}) which occurs at wavelength ($\lambda_{\alpha min}$) around 1.55µm.

So, the signal attenuation coefficient (α_{s1} db/km) decreases with $\lambda_s < \lambda_{\alpha min}$ while, α_{s1} increases with $\lambda_s > \lambda_{\alpha min}$ as shown in Fig.1. While, the pump attenuation coefficient (α_{p1} db/km) decreases with increasing λ_p (where usually $\lambda_p < \lambda_{\alpha min}$).

 $\begin{array}{c} \overbrace{(u_p)}^{\text{effect of attenuation coefficient}} \\ 30 \\ (u_p) \text{ on } L_{eff} \\ a_p = 0.15 \text{ db/km} \\ 0.25 \\ 0.35 \\ 0.35 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.35 \\ 0.50 \\ 0.50 \\ 0.51 \\ 0.50 \\ 0.51 \\ 0.50 \\ 0.51 \\ 0.50 \\ 0.51 \\ 0.50 \\ 0.51 \\ 0.50 \\ 0.51 \\ 0.50 \\ 0.51 \\ 0.51 \\ 0.50 \\ 0.51$

Fig.1 Attenuation of silica doped germania versus $\boldsymbol{\lambda}$

2.1.2 Effective Raman scattering length (Leff)

Fig.2 Effective Raman scattering length (L_{eff}) versus L and α_p (db/km) with (T₀=300°K), λ_p =1.48µm, a=3.5µm

(7)

Because of the pump power is absorbed through the fiber, the effective amplification length is reduced from the amplifier length (L) to the effective length (L_{eff}). Where L_{eff} is the distance that equates a distance during which the power is transferred from the pump to the signal. It is defined as [9]

$$L_{eff} = (1 - e^{-\alpha_p L})/\alpha_p \qquad \qquad \text{km} \quad (\text{where } \alpha_p \quad \text{in } \text{km}^{-1}) \tag{6}$$

From Eq.6, the value of L_{eff} increases with L but it lowering with α_p (Fig.2) and so, L_{eff} decreases with λ_p where usually $\lambda_p < \lambda_{amim}$.

2.1.3 Stimulated Raman scattering gain coefficient as a function of λ (gR)

Stimulated Raman scattering gain coefficient for pure silica, g_{R0} (m/W) is defined by using the published data which stated in [10] as shown in Fig.3 and the relation between g_{R0} and Δk_{ps} (the modified wave number difference) is derived by using the fitting curve technique, g_{R0} versus Δk_{ps} is defined from Fig.3 as; For $\Delta k_{ps} = 50$ to 200 cm⁻¹; with normalized error

 $\begin{aligned} & 10^{13} g_{R0} = 0.0237 + 0.0034 \, \Delta k_{ps} - 2.385 * 10^{-5} \, \Delta k_{ps}^2 + 6.235 * 10^{-8} \, \Delta k_{ps}^3 \\ & \text{For } \Delta k_{ps} = 201 \text{ to } 300 \text{ cm}^{-1} \text{ ;} \\ & 10^{13} g_{R0} = -2.4733 + 0.03532 \, \Delta k_{ps} - 0.0001537 \, \Delta k_{ps}^2 + 2.25925 * 10^{-7} \, \Delta k_{ps}^3 \\ & \text{For } \Delta k_{ps} = 301 \text{ to } 417 \text{ cm}^{-1} \text{ ; with normalized} \\ & 10^{13} g_{R0} = -1.88 + 0.01145 \, \Delta k_{ps} - 1.29 * 10^{-5} \, \Delta k_{ps}^2 \\ & \text{For } \Delta k_{ps} = 418 \text{ to } 440 \text{ cm}^{-1} \text{ ;} \\ & 10^{13} g_{R0} = 1.5565 - 0.002174 \, \Delta k_{ps} \\ & \text{For } \Delta k_{ps} = 441 \text{ to } 460 \text{ cm}^{-1} \text{ ;} \\ & 10^{13} g_{R0} = -0.39 + 0.00223 \, \Delta k_{ps} \\ & \text{For } \Delta k_{ps} = 461 \text{ to } 535 \text{ cm}^{-1} \text{ ;} \\ & 10^{13} g_{R0} = 0.4787 + 0.001635 \, \Delta k_{ps} - 2.745 * 10^{-6} \, \Delta k_{ps}^2 \\ & \text{For } \Delta k_{ps} = 536 \text{ to } 567 \text{ cm}^{-1} \text{ ;} \\ & 10^{13} g_{R0} = 7.7912 - 0.01353 \, \Delta k_{ps} \\ & \text{For } \Delta k_{ps} = 568 \text{ to } 600 \text{ cm}^{-1} \text{ ;} \\ & 10^{13} g_{R0} = 0.0341 + 0.0001515 \, \Delta k_{ps} \end{aligned}$

Where, Δk_{ps} is defined as;

$$\Delta k_{ps} = 10000 \left(\frac{1}{\lambda_p} - \frac{1}{\lambda_s}\right) \qquad \text{cm}^{-1} \quad \{\text{with, } \lambda_p \,(\mu m) \text{ and } \lambda_s \,(\mu m)\} \tag{8}$$

So, for $\lambda_s=1.5$ to 1.6µm and $\Delta k_{ps}=90$ to 584cm⁻¹ (optimum values of Δk_{ps}), the corresponding value of $\lambda_p=1.48$ µm. From Eq.8, the value of Δk_{ps} is decreasing with λ_p while Δk_{ps} is increasing with λ_s

* The dependence of g_{Rx} on the germania doping ratio (x) is [10];

$$g_{Rx} = \frac{n_s^2}{n_1^2} \{ g_{R0} + 100 C_{\nu} x g_{R0max} \frac{\lambda_s^3}{\lambda_{smax}^3} \}$$
(9)

Where, g_{R0max} is the maximum value of g_{R0} , λ_{smax} is the wavelength at which g_{R0} becomes g_{R0max} , n_1 and n_s are the refractive indices of core and clad respectively at λ_s and the parameter C_v is defined from the published data (Fig.4 [11]) and by using the fitting curve technique, C_v versus Δk_{ps} is defined as;

For
$$\Delta k_{ps} = 70$$
 to 220 cm⁻¹ :
 $c_{v} = 0.011$
For $\Delta k_{ps} = 220$ to 350 cm⁻¹ :
 $c_{v} = 0.08963 - 0.000688\Delta k_{ps} + 1.51786 * 10^{-6} \Delta k_{ps}^{2}$
For $\Delta k_{ps} = 350$ to 430 cm⁻¹ :
 $c_{v} = -0.55117 + 0.002559\Delta k_{ps} - 2.53247 * 10^{-6} \Delta k_{ps}^{2}$
For $\Delta k_{ps} = 430$ to 500 cm⁻¹ :
 $c_{v} = -0.635875 + 0.003689\Delta k_{ps} - 4.70238 * 10^{-6} \Delta k_{ps}^{2}$
For $\Delta k_{ps} = 500$ to 620 cm⁻¹:
 $c_{v} = 1.5979 - 0.008927\Delta k_{ps} + 1.718 * 10^{-5} \Delta k_{ps}^{2} - 1.1162 * 10^{-8} \Delta k_{ps}^{3}$ (10)

$$\int \frac{0.8}{0.6} + \frac{0.6}{0.00} + \frac{$$

Fig.3 The value of g_{R0} versus Δk_{ps} from [10]

Fig. 4 values of C_v [11]

The value of g_{R0max} as a function of x is [12];

(where x is a ratio) $g_{Rxmax} = (1+8.0x) g_{R0max}$ (11)For silica, g_{R0max} occurs at $\Delta k_{ps} = 420$ cm⁻¹, therefore from Eq.8, $\lambda_{\rm smax} = \left(\lambda_{\rm p}^{-1} + 0.001 \,\Delta \rm kps\right)^{-1}$ (12)μm

* The temperature dependence of Raman scattering gain(g_{RxT}) is derived from the relation between zero Kelvin Raman cross section of pure silica (σ_0) and temperature (T) which stated in [13]. The relation of g_{RxT} is derived as;

$$g_{RxT} = g_{Rx}T_{p1}$$
(13)
Where, $Tp_1 = T_p / T_{p(T=300)}$ and T_p is the thermal population factor [14,15];

$$T_p = 1 + \frac{1}{-1 + \exp\{h(f_p - f_s)/T K_B\}}$$
(14.a)

Where; h is the plank's constant (h=6.625*10⁻³⁴ J.s), T is the temperature (T °K) and K_B is the Boltzman constant $(K_B = 1.38*10^{-23} \text{ J/oK})$, To=300°K and f_p and f_s are the pump and signal frequencies. So, the value of $h(f_p-f_s) / T$ $K_B = 1.44 \Delta k_{ps} / T$

$$T_{p1} = \frac{[\exp(q_{\rm T} + q_{\rm To}) - \exp(q_{\rm T})]}{[\exp(q_{\rm T} + q_{\rm To}) - \exp(q_{\rm To})]} : q_{\rm T} = 1.44 \ \Delta k_{\rm ps} \ / {\rm T} , q_{\rm To} = 1.44 \ \Delta k_{\rm ps} \ / {\rm T}_{\rm o}$$
(14.b)

The temperature dependence of T_{p1} becomes little at higher values of Δk_{ps} . For T< 300°K, the value of g_{RxT} becomes smaller than that g_{RxT} (at T=300°K) and it increases with T. While for T > 300°K, the value of g_{RxT} becomes greater than that g_{RxT} (at T=300°K) and it increases with T.

For $T=T_o=300^{\circ}K$, the value of T_{p1} equals one.

The final effective stimulated Raman scattering gain coefficient (g_{rxT}) is defined as ;

$$g_{rxT} = 100 \ g_{RxT} / A_{eff}$$
 (W⁻¹ km⁻¹) (15)
where, gRxT (in 10⁻¹³ m/W) and A_{eff} (in μm^2)

Effective fiber core area (Aeff) is defined as [16]

$$A_{eff} = \frac{1}{2} \left(A_s + A_p \right) = \frac{\pi}{2} \left(W_s^2 + W_p^2 \right)$$
(16.a)

Where, A_s is the effective cross section area of the optical fiber at signal wavelength (λ_s), A_p is the effective cross section area of the fiber at optical pump wavelength (λ_p), W_s is the effective core radius at signal wavelength and W_p is the effective core radius at pump wavelength. W_{s, p} is defined as [8];

$$W_{s,p} = 0.65 + \frac{1.619}{V_{s,p}^{1.5}} + \frac{2.879}{V_{s,p}^6}$$
(16.b)

Where V_s and V_p are the normalized frequencies of fiber at λ_s and λ_p , respectively. the value of $V_{s,p}$ decreases with $\lambda_{s,p}$ {where, $V_{s,p} = (2\pi a / \lambda_{s,p}) (n^2_1 - n^2_s)^{0.5} [8]$ and a is the fiber core radius}.

The value of A_{eff} increases with fiber core radius and so g_{rxT} decreases with core radius as explained in [17]. Also A_{eff} increases with λ_s (with λ_p constant), therefore, g_{rxT} is lowerd with λ_s

Fig.5 Effective optical fiber area versus wavelength λ

For pure silica, the maximum Raman scattering gain $g_{R0max} = 0.65 \times 10^{-13} \text{m/W}$ [18] which occurs at $\Delta k_{ps} = 420 \text{ cm}^{-1}$ as shown in Fig.3.

2.2 Effect of the amplifier length (L) on the amplifier gain (G)

From Eq.3, and by putting dG/dL = 0, there is a peak value of gain (G_{peak}) at mean value of amplifier length (L_{Gpeak}) , it is called the optimum Raman amplifier length). . L_{Gpeak} is derived as;

$$L_{G \text{ peak}} = \ln(P_p g_{rxT}/\alpha_s) / \alpha_p$$
(17)
With T=300°K at x=0.03 the value of L creak = 50 km

=300°K at x=0.03 the value of $L_{\text{Gpeak}} = 50 \text{ km}$.

3. Results

The simulation results is done for silica doped Germania Raman amplifier with the following data ; core radius (a=3.5 μ m), Germania ratio (x=0.03), reference temperature (T_o=300 °K), operating temperature (T=300 °K), pump wavelength (λ_p =1.48µm), pump power (P_p=1W), signal wavelength (λ_s =1527.55nm to 1567.19nm), signal power at input of amplifier (Ps0 =0.1 mW i.e -10dbm) and the amplifier length (L =50 km, optimum Raman amplifier length) also with amplifier length (L=100 km).

Raman amplifier is used to amplify a 48 WDM (with wavelengths of the center of the channel, λ_{ch} , are indicated in

Table 1). The value of λ_s is replaced by λ_{ch} in the above equations (i.e. $\lambda_s = \lambda_{ch}$)

Table 1: Center wavelength (λ_{ch})) of the 48 WDM, 100GHz (λ =1529.55 to 1567.19nm) [19]

channel	$\lambda_{ch} nm$						
1	1529.940	13	1539.336	25	1548.732	37	155.8.128

2	1530.723	14	1540.119	26	1549.515	38	155.8.911
3	1531.506	15	1540.902	27	1550.298	39	155.9.694
4	1532.289	16	1541.685	28	1551.081	40	156.0.477
5	1533.072	17	1542.468	29	1551.864	41	1561.260
6	1533.855	18	1543.251	30	1552.647	42	1562.043
7	1534.638	19	1544.034	31	1553.430	43	1562.826
8	1535.421	20	1544.817	32	1554.213	44	1563.609
9	1536.204	21	1545.600	33	1554.996	45	1564.392
10	1536.987	22	1546.383	34	1555.779	46	1565.175
11	1537.770	23	1547.166	35	1556.562	47	1565.958
12	1538.553	24	1547.949	36	1557.345	48	1566.741

The value of parameter (g_{RxT}) is decreased with λ_{ch} (Fig.6.a). Also as expected α_{ch} decreases even $\lambda_{\alpha min}$ and it turned to increases for $\lambda_{ch} > \lambda_{\alpha min}$ (Fig.6.b)

The final out put gain (G) decreases with the center wavelength (through this bandwidth, 1527.55 to 1567.19nm) and gain lowered with increasing amplifier length (Fig.7)

The value of final gain with amplifier length equal the optimum Raman amplifier length (L_{gpeak} =50km) is about 600 % of the gain with amplifier length 100km (Fig.7)

The final out put gain (G) decreases with the center wavelength (through this bandwidth, 1527.55 to 1567.19nm) and gain lowered with increasing amplifier length (Fig.7)

Fig.6 Raman gain coefficient (g_{Rxt}) and attenuation coefficient (α_{ch}) for each channel wavelength

Fig.7 Variation of amplifier gain for each channel wavelength Notice that L=50 km is the optimum Raman amplifier length (L_{Gpeak})

	- •	- •					- •				- •
i	Gain	Gain	i	Gain	Gain	i	Gain	Gain	i	Gain	Gain
	L=50km	L=100k		L=50k	L=100k		L=50km	L=100k		L=50km	L=100
		m		m	m			m			km
1	622.67	112.81	13	597.95	109.85	25	569.29	105.20	37	536.78	98.86
_							• • • • • • • •		• ·		
2	620.76	112.62	14	595 71	109 53	26	566 73	104 74	38	533.90	98.25
2	020.70	112.02	17	575.71	107.55	20	500.75	104.74	50	555.70	70.25
2	618.83	112 /2	15	503 11	100.20	27	564.14	104.26	20	530.08	07.64
5	010.05	112.43	15	393.44	109.20	21	504.14	104.20	39	550.98	97.04
4	(1(0(112.22	16	501.15	100.05	20	5(1.52	102 77	40	529.00	07.01
4	616.86	112.23	16	391.13	108.85	28	561.52	103.77	40	528.06	97.01
	<i></i>				100.10	• •		100.00			
5	614.87	112.01	17	588.83	108.49	29	558.88	103.27	41	525.10	96.38
6	612.85	111.78	18	586.48	108.12	30	556.21	102.76	42	522.13	95.73
7	610.80	111.54	19	584.11	107.74	31	553.51	102.24	43	519.11	95.07
8	608.73	111.29	20	581.71	107.35	32	550.79	101.70	44	516.08	94.40
											,
9	606.63	111.02	21	579.28	106 94	33	548.04	101.16	45	513.03	93 72
	000.05	111.02	21	579.20	100.91	55	5 10.01	101.10	15	515.05	95.12
10	604.47	110.75	22	576.82	106 53	3/	545.27	100.60	46	500.05	03.03
10	004.47	110.75	~~~	570.02	100.55	54	575.27	100.00	-10	509.95	95.05
11	602.24	110.46	22	574.24	106.10	25	512 46	100.02	47	506.94	02.22
11	602.34	110.46	23	5/4.54	106.10	55	542.46	100.03	4/	506.84	92.33
10	(00.1.5	110.15			105.65	26	70 0 (2	00.4-	10	500 51	01.6
12	600.16	110.16	24	571.83	105.66	36	539.63	99.45	48	503.71	91.62

Гable	2 am	plifier	gain	with	L=5	50 km	and	L=1	00	km
			0							

4. Conclusion

The gain of Germania doped silica Raman amplifier fiber is affected by the optical fiber structure (core radius, a, ratio of Germania, x, and amplifier length, L) and the operating parameters (signal wavelength, λ_s , pump wavelength, λ_p , pump power P_p, and temperature, T).

The final optical signal gain (G) independent upon the kind of pump. The final gain decreases with the channel wavelength (λ_{ch}). Maximum output gain occurs with coupler length equals the optimum Raman amplifier length (L_{gpeak} , in this simulation results L_{Gpeak} =50km). the gain decreases with amplifier length.

The effect of λ_s on the amplifier gain becomes very evident to degree there is variation of the channels gain. Gain of channel 1 greater than the gain of channel 48 by 19%.

References

- Asyaz S, Hussain I, Khan FU, Khan MA, Khan IU. Evaluation of chemical analysis profile of Citrullus colocynthis growing in southern areas of Khyber Pukhtunkhwa Pakistan. World appl. Sci. J. 2010; 10(4): 402-405.
- [1] Mingming Tan, Paweł Rosa, Tu T. Nguyen, Mohammad A. Z. Al-Khateeb, Md. AsifIqbal, TianhuaXu, Feng Wen, Juan D. Ania-Castañón and Andrew D. Ellis," Distributed Raman Amplification for Fiber Nonlinearity Compensation in a Mid-Link Optical Phase Conjugation System," Sensors 2022, 22, 758. pp1-18 2022 https://doi.org/10.3390/s22030758,
- [2] Mohamed Fayez, Fathy M. Mustafa, Tarek M. Said and Amr M. Gody," Distributed Backward Pumped Raman Amplifiers Gain without Attenuation: A New Approach" Journal of Advanced Engineering Trends, Vol.41, No. 1. January 2022, pp.83-89
- [3] S. Shameem and A. Sivasubramanian , "Performance Improvement of Gain in Distributed Raman Amplifier Using Forward and Backward Pumps" Springer Nature Singapore Pte Ltd. Pp.221-227, 2018
- [4] Mohammed N. Islam, "Raman Amplifiers for Telecommunications", IEEE Journal of selected topics in quantum electronics, Vol. 8, No. 3, pp. 548-559, May/June 2002
- [5] Kjær, Rasmus; Jeppesen, Palle; Oxenløwe, Leif Katsuo; Pálsdóttir, Bera, "Raman amplification in optical communication systems," Ph.D. thesis , Technical University of Denmark pp.10, 14, 20. June 2008.
- [6]John D. Downie, Ming-Jun Li, and SergejsMakovejs, "Single-Mode Fibers for High Speed and Long-Haul Transmission," © Springer Nature Singapore Pte Ltd. Pp.18- 22, 2018, G.-D. Peng (ed.), Handbook of Optical Fibers,
- [7] Mahmoud I. Abd-AllaandFatma M. Aref M. Houssien, "Improvement of the Performance of Advanced Local Area Optical Communication Networks by Reduction the Effects of the Propagation Problems," International Journal of Computer Science and Information Technologies (IJCSIT), Vol.1 (3), pp.147-157, 2010.
- [8] Govind P. Agrawil, "Fiber Optic Communication Systems," John Wiley & Sons Inc. 3ed edition, pp.33-37, 2002
- [9] Arwa H. Beshr1, Moustafa H. Aly1# and A.K. AboulSeoud2," Amplified Spontaneous Emission Noise Power in Distributed Raman Amplifiers," International Journal of Scientific & Engineering Research Volume 3, Issue 5, pp.1-5, May-2012 1 ISSN 2229-5518
- [10]Yuhong Kang, "Calculations and Measurements of Raman Gain Coefficients of Different Fiber Types", Thesis submitted to The Faculty of the Virginia Polytechnic Institute and State University in partially fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Roger H. Stolen, Chair, Ira Jacobs Ahmad Safaai-Jazi, December 9, 2002, Blacksburg, Virginia
- [11] Yuhong Kang, "Calculations and Measurements of Raman Gain Coefficients of Different Fiber Types", Thesis submitted to The Faculty of the Virginia Polytechnic Institute and State University in partially fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Roger H. Stolen, Chair, Ira Jacobs Ahmad Safaai-Jazi, December 9, 2002, Blacksburg, Virginia
- [12] S. T. Davey, D. L. Williams, B. J. Ainsite, W. J. M. Rothwell and B. Wakefield," Optical Gain Spectrum Of GeO2-SiO2 Raman fiber Amplifier," IEEE proceeding, Vol. 136, PL. J., No.6, pp.301-306, Dec. 1989
- [13] ST. Davey, D.L. Williams, B.J. Ainslie, W.J.M. Rothwell and B. Wakefield," Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers," IEE PROCEEDINGS, Vol. 136, Pt. J, No. 6, pp.301-306, DECEMBER 1989

- [14]Marcelo A. Soto and Fabrizio Di Pasquale," Distributed Raman Sensing ", Handbook of Optical Fibers pp1-55| Citeas,FirstOnline: 04December2017https://link.springer.com/referenceworkentry/10.1007/978-981-10-1477-2_6-11 may at 2 AM
- [15]Mohammed N. islam ," Raman amplifiers for Telecommunications & physical principles," Springer Verlag, New York, page 12, 2004
- [16] ST. Davey, D.L. Williams, B.J. Ainslie, W.J.M. Rothwell and B. Wakefield, "Optical Gain Spectrum of GeO2-SiO2 Raman Fibre Amplifiers", IEE Proceedings, Vol. 136, Pt. J, No. 6, pp.301-306, Dec.1989.
- [17] Kjær, Rasmus; Jeppesen, Palle; Oxenløwe, Leif Katsuo; Pálsdóttir, Bera, "Raman amplification in optical communication systems," Ph.D. thesis, Technical University of Denmark pp.10, 14, 20. June 2008.
- [18] L.N. Binh, T.L huynh, S. Sargent and A. Kirpalani, "Fiber Raman Amplification in Ultra-high Speed Ultralong Haul Transmission: Gain Profile, Noises and Transmission Performance," Department of Electrical and Computer Systems Engineering Technical Report MECSE-1-2007
- [19] 48ch 100GHz 1529.55-1567.13nm Active Dual Fiber DWDM Mux, AAWG, NX N40 Plug-in Module, In accordance with the ITU-T G.694.1 100GHz grid, it maximizes the capacity of the C-band range https://www.fs.com/products/153139.htm
- [20] Mahmoud I. Abd-Allaand Fatma M. Aref M. Houssien, "Improvement of the Performance of Advanced Local Area Optical Communication Networks by Reduction the Effects of the Propagation Problems," International Journal of Computer Science and Information Technologies (IJCSIT), Vol.1 (3), pp.147-157, 2010.