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ABSTRACT 

Egypt faces significant challenges in managing its limited water resources. Agricultural drainage water 

has become a crucial unconventional water resource that can be reused for irrigation. This study focuses on the 

Gharbia Main Drain, a crucial water source that provides 1.9 billion cubic meters of water annually. However, it is 

heavily polluted by agricultural runoff, domestic wastewater, and industrial discharges. To address this, the study 

aims to develop accurate Water Quality Indices (WQIs) for assessing pollution levels in the drain using Artificial 

Neural Networks (ANNs). This study involves analyzing nineteen water quality parameters covering key 

biological, industrial, and agricultural pollutants. The Canadian Water Quality Index (CWQI) is calculated, 

followed by preprocessing the dataset for training Artificial Neural Network (ANN) models with cross-validation 

to ensure accuracy. Results are analyzed annually and seasonally. Feature importance and sensitivity analyses were 

applied to identify the parameters most influencing developed WQIs in the Gharbia Main Drain. The proposed 

Artificial Neural Network (ANN) models proved to be highly reliable, effectively capturing the nonlinear 

relationships within the data and providing more accurate predictions compared to traditional models for WQI 

evaluation. Five WQI models were developed to evaluate the water quality of the Gharbia Main drain based on 

different pollution types: biological, industrial, aquatic, agricultural, and overall pollution. Biological pollution 

emerged as the dominant contributor to poor water quality in the drain. Water quality improved progressively from 

the inlet to the outfall of the drain, with the Biological Water Quality Index (BWQI) at the Seegaya branch drain 

(MG02), located at the inlet, increasing only slightly from 8% in 2000–2005 to 23% in 2017–2023. In contrast, the 

New Gharbia Outfall branch drain (MG14) exhibited better performance, with BWQI improving from 43% to 50% 

over the same period. Furthermore, water from branch drains located in the downstream reach of the Gharbia Drain 

consistently showed better water quality than upstream branch drains, indicating that these downstream branches 

may be suitable for reuse by mixing it with nearby canals before discharging into the main drain.Seasonal analysis 

highlighted spring and summer as the best seasons at most sites. For example, at MG12, spring BWQI rose from 

51% to 92%, the highest observed value. The results of the feature importance analysis identified seven key 

parameters: Fecal coliform (FC), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), 

Dissolved Oxygen (DO), Ammonium (NH4), Total Dissolved Solids (TDS), and Electrical Conductivity (EC) as 

the most influential when evaluating WQIs. S Sensitivity analysis further supported these findings, showing that 

variations in these same parameters had the greatest impact on predicted WQIs. 

Keywords: Gharbia Main Drain, Water Quality Index (WQI), Artificial Neural Networks (ANNs), Sensitivity 

Analysis, Water Management 
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1. Introduction 

Water is the essence of life and is essential for all activities on Earth, including municipal, agricultural, 

and industrial processes. However, water scarcity has emerged as a critical global issue, particularly in arid and 

semi-arid regions. Egypt faces significant challenges in managing its limited water resources while maintaining 

acceptable water quality. According to the 1959 Nile Water Agreement with Sudan, Egypt is allocated 55.5 billion 

cubic meters (BCM) of water annually, which has historically supported domestic water supply, irrigation, 

industrial activities, fisheries, and recreation.  

Continuous population increase, land reclamation, and industrial activities have significantly affected 

these water resources, raising serious concerns about both water quantity and quality (El-Sayed A 2019), (Abd-

Elfattah et al., 2021). As a result, Egypt’s per capita freshwater availability declined from approximately 1,893 

m3/year in 1959 to 700 m3/year in 2012, with further reductions projected to reach 505 m3/year by 2025, placing 

Egypt well below the internationally recognized water scarcity threshold of 1,000 m3/year (Esraa et al. 2023). 

Accordingly, it has become vital to explore non-conventional water resources. Agricultural drainage water 

reuse, in particular, has emerged as a crucial source of irrigation water in Egypt. Among these resources, the 

Gharbia Main Drain plays a significant role, contributing 1.9 billion cubic meters of water annually (El-Sherbiny 

EK, El-Kassas H 2018). It collects agricultural runoff, domestic wastewater, and industrial effluents, which have 

negatively impacted its water quality. Studying the water quality in this drain is essential for industry, the 

environment, and public health protection. It is also critical for the agricultural sector, as it affects agricultural 

productivity and prevents crop contamination.(Osman et al, 2023; Radwan et al., 2019). 

The degradation of water quality in the Gharbia Main Drain is primarily driven by diverse pollution 

sources. Agricultural runoff introduces significant amounts of nutrients such as nitrogen and phosphorus into the 

water, leading to eutrophication and harmful algal blooms (Abdelrazek S. 2019; K. 2016). Industrial discharges 

contribute to hazardous substances, including heavy metals like Lead, Iron, Cadmium,  and Nickel, posing serious 

risks to aquatic life and human health (S. 2015; Vardhan KH, Kumar PS 2019). Additionally, the discharge of 

untreated or inadequately treated domestic wastewater can lead to significant environmental contamination and 

pose serious health risks to surrounding communities (Amin MA 2002; MM. 2014). 

These pollutants contaminate the water of the Gharbia Drain and threaten its suitability for agricultural 

irrigation and industrial purposes, posing long-term risks to the region's water resources (Hamed MA., 2019; 

Mbeche GO.,2021).To effectively monitor, assess, and manage water quality in such complex ecosystems, Water 

Quality Indices (WQIs) have long been used as critical tools. They summarize the overall quality of water into a 

single numerical value that reflects the combined impact of multiple water quality parameters, making it easier to 

understand and communicate the state of water quality (El-Sayed A 2019), (El-Amier et al., 2021), (W.O et al. 

2025).  

However, traditional methods of calculating WQIs often rely on linear models that may not fully capture 

the complex, nonlinear relationships among various water quality parameters. These methods also struggle to 

account for seasonal and environmental changes. These methods often lose important details about individual water 

quality variables, treat all factors equally, and fail to capture specific local conditions or water uses. Therefore, they 

may not provide a complete or accurate picture of water quality (Dehkordi DK, 2015; Zhang et al., 2010). 

In response to these limitations, there has been a growing interest in applying advanced tools, such as 

Artificial Neural Networks (ANNs) to develop more accurate and reliable WQIs. ANNs are particularly well-suited 

for modeling the multifaceted nature of water quality data due to their ability to learn from vast datasets, adapt to 

new conditions, and predict outcomes with high precision (Tiyasha, Tran MT 2020), (Singh et al., 2009). These 

models can effectively capture nonlinear relationships between multiple water quality parameters, making them 
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more robust and versatile than traditional linear models (Thakur D 2023), (Gavali KR 2023). ANNs can be trained 

to predict water quality based on historical data, and they can accommodate new data inputs to update predictions, 

offering a powerful and prevailing tool for water quality evaluation (Juahir c, 2004; Khadr M, 2017). 

Consequently, this study aims to develop more accurate and reliable Water Quality Indices (WQIs) for 

the Gharbia Main Drain using Artificial Neural Networks (ANNs). The primary objective is to create distinct WQIs 

for each type of pollution, including biological, industrial, agricultural, and an overall index. The research will 

involve analyzing extensive water quality data collected over several years and across different seasons, focusing 

on 19 key parameters representing biological, chemical, and physical indicators. These parameters include: Fecal 

Coliform (FC), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Cadmium (Cd), Copper 

(Cu), Iron (Fe), Manganese (Mn), Zinc (Zn), Nickel (Ni), Lead (Pb), Dissolved Oxygen (DO), Total Suspended 

Solids (TSS), pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Nitrate (NO₃), Ammonium (NH₄), 

Total Phosphorus (TP), and Total Nitrogen (TN).  

The WQIs developed using Artificial Neural Networks (ANNs) will be evaluated by comparing them to 

the results of the Canadian Water Quality Index (CWQI). Key performance metrics, such as standard deviation 

(STD), mean square error (MSE), and the coefficient of determination (R²), will be used to ensure their accuracy, 

efficiency, and precision. Additionally, sensitivity analysis will evaluate how changes in water quality parameters 

affect the WQI, while feature importance analysis will highlight the parameters that contribute most significantly 

to WQI predictions. These approaches may provide valuable insights for environmental monitoring and decision-

making in the field of water quality. 

This study introduces a novel modeling framework that leverages Artificial Neural Networks (ANNs), 

integrated with sensitivity analysis and feature importance techniques, to develop data-driven Water Quality 

Indices (WQIs) for the Gharbia Main Drain. Unlike conventional indices that rely on fixed parameter weightings 

or focus on single-source pollution, this framework applies adaptive learning across biological, industrial, and 

agricultural pollution sources simultaneously. 

By embedding sensitivity analysis, the model does not only predict water quality but also quantifies how 

variations in specific pollutants influence overall water quality. In parallel, the feature importance analysis 

identifies the most critical pollution drivers. This dual predictive and diagnostic capability represents a novel 

methodological contribution, offering a dynamic, site-specific assessment tool tailored to the challenges of complex 

drainage systems in arid and semi-arid environments, such as Egypt’s Nile Delta. 

The results will offer a powerful tool for assessing and improving water quality in the Gharbia Main Drain, 

ultimately supporting more sustainable water resource management practices in Egypt’s Nile Delta region. 

Furthermore, the study’s findings may have broader implications for the application of ANNs in water quality 

management in other regions facing similar challenges, contributing to global efforts in sustainable water resource 

management. 

2. Material and methods 

This section includes a description of the study area, followed by a detailed explanation of the 

methodology employed in this study. The methodology of this study includes the collection of water quality (WQ) 

parameters, followed by data entry for the calculation of the Canadian Water Quality Index (CWQI). The dataset 

is then normalized to facilitate the training of Artificial Neural Network (ANN) models, with cross-validation 

employed to ensure model accuracy. After achieving the training goals, results are analyzed using two approaches: 

first, by averaging values over each study period, and second, by calculating the average values of each season 

(Summer, Fall, Winter, and Spring) to assess seasonal variations. 



Delta University Scientific Journal Vol.08 - Iss.01 (2025) 274-301 

 

Page | 277 

 Finally, sensitivity analysis and feature importance are conducted to identify the key parameters 

influencing water quality in the Gharbia Main Drain. The framework of the proposed methodology is outlined in 

Figure 1. 

 

Figure 1: The workflow diagram of the proposed methodology 

2.1. Study Area 

The Gharbia Main Drain is one of the largest and most critical drainage systems in Egypt, located to the 

north of Cairo. It extends about 71 kilometers starting at Gharbia governorate and flowing through Dakahilya and 

Kafr el Sheikh governorates as shown in Figure 2 (El-Sherbiny EK, El-Kassas H 2018), (Allam et al., 2016). It 

plays a pivotal role in the region’s water management, collecting agricultural drainage water from various sources. 
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However, the Gharbia Main Drain is also heavily contaminated by multiple pollution sources, which presents 

significant challenges to water quality and environmental management in the region (Allam et al., 2016). 

 

Figure 2: Gharbia’s Main Drain Catchment Area after (Allam et al., 2016) 

Annually, the Gharbia Main Drain discharges around 1,900 million cubic meters of water, with 50% of 

this discharge flowing into the Mediterranean Sea. The remaining 50% is reused officially and non-officially for 

irrigation purposes, affecting public health and agricultural productivity. The drain has 7 main branches, each with 

a lifting pump station at its outlet. The Gharbia Drain starts from the Segaeaya drain pump station. The other 

branches are distributed along the Eastern and Western banks of the drain, including Hafir Shehab El-Din, drain 

No.3, drain No.4, drain No.5, Drain No.6, and Samatay Drain as presented in Figure 3 (Khalifa AK, Abdel H 

2006), (El-Gammal et al., 2009).  

 
Figure 3: Schematic diagram of the Gharbia Main Drain after (El-Gammal et al., 2009) 
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2.2. Data Collection 

The evaluation of water quality in the Gharbia Main Drain was based on water sample data collected from 

previous research (Osman et al., 2023),(Abd-Elfattah et al., 2021),(Abosena et al., 2021),(El-Sherbiny EK, El-

Kassas H 2018),(El-amier et al. 2017),(Mohamed, Elansary, and Moussa 2017),(Taha et al., 2012),(Zaghloul SS 

2011),(El-Gammal et al., 2009),(Donia et al., 2009),(Khalifa AK, Abdel H 2006), and the annual reports of the 

Drainage Research Institute (DRI) (Drainage Research Institute (DRI) yearbooks 2000:2015), covering the period 

from 2000 to 2023 for the Gharbia Main Drain and its branches.  

During the period from 2000 to 2015, water quality samples were collected monthly at each monitoring 

site, providing 12 data points per year per site. For the period from 2017 to 2023, sampling frequency shifted to 

seasonal collection, resulting in 4 data points per year per site. It is important to note that data were missing for the 

period between July 2015 and January 2017. All collected data underwent quality checks and preprocessing before 

being used in the ANN models. This preprocessing included reviewing for completeness and consistency, and in 

cases where minor gaps were identified, these were filled using linear interpolation. Finally, the complete dataset 

was normalized using min-max scaling to ensure uniform contribution of all parameters during model 

training.Table 1 summarizes the average values for each water quality parameter across the study period, providing 

a baseline characterization of water quality conditions in the Gharbia Main Drain. 

Table 1. Average values of key water quality parameters in the Gharbia Main Drain during the study period 

parameter Unit 
Stations 

MG02 MG04 MG28 MG05 MG07 MG08 MG09 MG12 MG14 

FC MPN/100ml 3219564 968010 1243241 581125 1603589 546260 510443 125692 330423 

BOD mg/L 43.3 34.2 33.5 29.1 30.9 31.9 31.0 22.6 26.4 

COD mg/L 56.6 46.1 44.3 38.0 41.4 42.6 41.6 30.8 33.5 

Cd mg/L 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.001 

Cu mg/L 0.065 0.055 0.050 0.057 0.050 0.053 0.080 0.041 0.056 

Fe mg/L 0.682 0.756 0.604 0.671 0.697 0.648 0.680 0.668 0.608 

Mn mg/L 0.2 0.215 0.223 0.2 0.270 0.193 0.219 0.226 0.209 

Zn mg/L 0.035 0.028 0.035 0.029 0.030 0.046 0.034 0.026 0.032 

Ni mg/L 0.003 0.005 0.009 0.005 0.005 0.005 0.006 0.005 0.003 

Pb mg/L 0.007 0.012 0.009 0.012 0.009 0.013 0.009 0.016 0.011 

DO mg/L 1.17 1.56 1.34 5.57 2.06 1.81 2.29 2.90 2.43 

TSS mg/L 65.6 60.2 42.0 46.1 82.4 42.6 46.1 102.6 75.5 

pH  7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.6 7.6 

EC dS/m 1.5 1.2 1.2 1.3 3.2 1.5 1.5 5.0 3.8 

TDS mg/L 996.1 854.7 851.6 866.7 2074.7 1014.2 1082.7 3222.0 2463.2 

NO3 mg/L 8.2 7.1 6.9 6.8 11.2 7.4 7.6 11.9 10.6 

NH4 mg/L 4.1 3.3 5.3 3.7 3.4 2.4 2.2 3.7 3.1 

TP mg/L 1.04 0.93 0.92 0.73 0.54 0.75 0.72 0.60 0.70 

TN mg/L 12.7 10.6 12.5 10.9 15.0 10.3 10.2 16.3 14.1 

The Central Laboratories for Environmental Quality Monitoring (CLEQM) of the National Water 

Research Center (NWRC) analyzed these samples, which were collected from various locations along the Gharbia 

Main Drain and its branches according to the National Water Quality Monitoring Network (NWQM 2003). The 

coordinates and names of these monitoring sites are presented in Table 2. 
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Table 2. Water Quality Monitoring sites in the Gharbia Main Drain and its branches 

Site Site Name 
Co-ordinates 

Latitude Longitude 

MGO2 Segaaya Pump Station(P.S.) 31.018816 31.071283 

MG04 Samatay P.S. 31.121244 31.055928 

MG05 P.S No. 5 31.183316 31.125833 

MG07 P.SNo. 6 31.287333 31.13875 

MG08 El Hamul P.S 31.309166 31.141166 

MG09 P.SNo. 4 31.303250 31.197733 

MG12 Hafir Shehab El Din P.S 31.490766 31.151633 

MG14 New Gharbia Outfall 31.49755 31.1469 

MG28 Bridge Down Stream Samaty P.S. 31.14258 31.0542 

2.3. Water Quality Parameters and Data Categorization 

The previous nineteen water quality parameters mentioned in the introduction were categorized into four 

distinct groups based on their pollution sources: biological, industrial, agricultural, and overall pollution. In 

addition to these specific categories, an aquatic category was created to evaluate aquatic life along the main drain 

and its branches. The comprehensive categories illustrated in Figure 4 were used to develop a holistic ANN model 

that integrates data from all pollution sources, providing a complete assessment of water quality. 

 
Figure 4: Categorization of Water Quality Parameters 

To further contextualize the importance of these parameters, their permissible limits according to Egyptian 

Decree Law No. 48 of 1982 (EGYPT Decree Law 48 / 1982) and its Executive Regulations Law No. 92 of 

2013(Egypt Decree 2013), , along with the Food and Agriculture Organization (FAO) guidelines for irrigation 

water quality (FAO, 2003), are summarized in Table 3. These national standards set the maximum allowable 

concentrations for key water quality parameters in drainage water prior to discharge into freshwater bodies, serving 

as an important regulatory benchmark for evaluating water quality in the Gharbia Main Drain, complementing the 

scientific evaluation conducted using the Canadian Water Quality Index (CWQI). 
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Table 3. Selected Water Quality Parameters and their Guidelines in Drainage Water 

Water Quality Parameter Unit Guideline Decree-Law No. 92 of 2013 FAO Guideline 

FC MPN/100ml 5000 1000 

BOD mg/L 30  

COD mg/L 50  

Cd mg/L 0.03 0.01 

Cu mg/L 1 0.2 

Fe mg/L 3 5 

Mn mg/L 2 0.2 

Zn mg/L 2 2 

Ni mg/L 0.1  

Pb mg/L 0.1 5 

DO mg/L >5  

TSS mg/L 500  

pH  6.5:8.5 6.5:8.4 

EC dS/m 0.64 3 

TDS mg/L 1000 2000 

NO3 mg/L 45 5:30 

NH4 mg/L 0.5 5 

TP mg/L 3  

TN mg/L 15  

2.4. Canadian Water Quality Index (CWQI) 

The Canadian Water Quality Index (CWQI), developed by the Canadian Council of Ministers of the 

Environment (CCME), simplifies water quality data by combining multiple measurements into a single score. This 

standardized method provides a clear summary of water quality for experts and the public, enabling easy 

communication and trend monitoring over time(Tyagi et al., 2013),(Canadian Council of Ministers of the 

Environment. 2001).  

The CWQI serves as the target output for the ANN models. By training the ANN on the input water quality 

parameters, the model learns to predict the CWQI. The parameters selected for CWQI calculation were chosen to 

align with the permissible limits set by Decree Law No. 48 of 1982 and its Executive Regulations, Decree No. 92 

of 2013, as shown in Table 3. WQIs for the Gharbia Main drain were calculated according to the mentioned 

data categorization in the previous section Figure 4. 

2.4.1. Calculation of CWQI 

The CWQI is calculated using three key factors 𝐅𝟏 , 𝐅𝟐 , 𝐅𝟑 as the following: 

Scope (𝐅𝟏): Reflects the extent of non-compliance with water quality guidelines over a given period. 

F1 = ( 
Number of failed variables

Total number of variables
 ) x 100                                                                                                                       (1) 

Frequency (𝐅𝟐): Indicates the proportion of individual tests that fail to meet water quality objectives. 

F2 = ( tests ) x 100                                                                                                                                                  (2) 
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Amplitude (𝐅𝟑): Quantifies how the failed test values deviate from their respective objectives. The calculation of 

F3 involves three steps: 

1. Excursions Calculation:  

For test values that should not exceed the objective:  

Excursion = 
Failed Test Value−Objective

Objective
                                                                                                                       (3) 

For test values that should not fall below the objective:  

Excursion =  
Failed Test Value−Objective

Failed Test Value
                                                                                                                      (4) 

2. Normalized Sum of Excursions (NSE):  

Obtained by summing all the excursions and dividing by the total number of tests:  

NSE = 
∑excursions

Total number of tests
                                                                                                                                         (5) 

3. 𝐅𝟑  Calculation:  

The amplitude factor is calculated using an asymptotic function that scales the normalized sum of excursions 

(NSE) to a range between 0 and 100: 

F3 = ( 
NSE

0.01 nse+0.01
 )                                                                                                                                                  (6) 

Once F1, F2, and F3 have been calculated, the CWQI is determined by combining these factors into a final index 

score:  

CWQI = 100 – ( 
√F1

2+F2
2+F3

2 

1.732
  )                                                                                                                                  (7) 

where 1.732 is a correction factor. 

2.4.2. CWQI Score Categorization 

The CWQI score is categorized into five levels to describe the water quality, as summarized in Table 4 (Tyagi et 

al., 2013). 

Table 4. Canadian Water Quality Index (CWQI) Score Categories 

CWQI Score Water Quality Index Category 

95-100 Excellent 

80-94 Good 

65-79 Fair 

45-64 Marginal 

0-44 Poor 
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2.5. Artificial Neural Networks (ANNs) 

An artificial neural network (ANN) is a highly parallel and distributed information processing system 

modeled after the neural networks in the human brain (Altunkaynak A. 2007). It is a powerful soft computing 

technique used for linear and nonlinear approximations across various fields (Kişi Ö. 2006), which traditional 

statistical methods may not effectively capture (Tyagi et al., 2013).  The ANN consists of an array of interconnected 

neurons designed to solve specialized problems, where all input nodes feed into the first hidden layer, the hidden 

layers pass information sequentially to each other, and the final hidden layer feeds into the output layer (Konaté et 

al., 2015). The architecture of an ANN includes a specified number of hidden layers, along with neurons distributed 

across the input layer, hidden layers, and output layer. 

The ANN models developed in this study were structured to optimize performance across different water 

quality categories. The input layer consisted of nodes representing various water quality parameters, while multiple 

architectures of hidden layers were explored to find the optimal configuration, as the relation between inputs and 

outputs is nonlinear, as shown in Figure 5 for biological parameters.  

The tested configurations included one hidden layer with 5, 10, and 15 neurons; two hidden layers with 5, 

10, and 15 neurons in each layer; and three hidden layers, each with 10 neurons. The output layer predicted the 

Water Quality Index (WQI), with the Canadian Water Quality Index (CWQI) serving as the target variable. 

 

Figure 5: Visualization of the Nonlinearity of Biological Data 

To prevent overfitting and ensure robust generalization, the dataset, which included 2,016 water quality 

records collected from nine monitoring sites over the period from 2000 to 2023, was divided into three subsets: 

70% for training, 15% for validation, and 15% for testing. This approach allowed the model to learn effectively 

while retaining an independent dataset for unbiased evaluation. Additionally, early stopping was applied during 
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training, terminating the process when validation error began to increase, preventing unnecessary overfitting. For 

model training, the ANN used a backpropagation algorithm, which updates the network's weights to minimize 

prediction errors. The sigmoid activation function was applied in the hidden layers, transforming the inputs into 

outputs within a range of 0 to 1 (Abdel-Fattah MK, Mokhtar A 2021): 

f(x) = 
1

1+𝑒−𝑥                                                                                                                                                                 (8) 

In forward propagation, the output of each neuron 𝑦𝑗 was computed by summing the weighted inputs and 

applying the activation function: 

𝑦𝑗 =f (∑ 𝑤𝑖𝑗
𝑛
𝑖=1 𝑥𝑖  +  𝑏𝑗)                                                                                                                                            (9) 

where 𝑦𝑗 is the output of neuron j, 𝑤𝑖𝑗  are the weights, 𝑥𝑖 are the inputs, and 𝑏𝑗 is the bias term. 

During backpropagation, the model's weights were updated to minimize the error function, typically the 

mean squared error (MSE). The weight update rule followed this equation: 

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) – η 
∂E

∂𝑤𝑖𝑗
                                                                                                                                      (10) 

where 𝑤𝑖𝑗(𝑡)is the weight at iteration t, η is the learning rate, and E is the error function. 

The performance of the ANN models was evaluated using three key metrics (Abdel-Fattah MK, Mokhtar 

A 2021): standard deviation (STD), mean squared error (MSE), and the coefficient of determination (𝐑𝟐). A 

lower standard deviation (STD) indicates more consistent predictions and is calculated as: 

STD =√
1

𝑛
∑(𝑦𝑘 − ỹ)2                                                                                                                                               (11) 

where 𝑦𝑘  represents the predicted value, and ỹ denotes the mean of the predicted values.  

The mean squared error (MSE) reflects the model's accuracy by quantifying the average squared difference between 

actual and predicted values and is computed using the formula: 

MSE = 
1

𝑛
 ∑ (𝑦𝑘 − ỹ)2𝑛

𝑘=1                                                                                                                                             (12) 

Where 𝑦𝑘  is the actual output, and ỹ is the predicted output. A lower MSE indicates greater accuracy and better 

error minimization in the model's predictions. 

The coefficient of determination (R2) measures the proportion of variance in the dependent variable that can be 

explained by the independent variables and is calculated as: 

R2 = 1- 
∑ (𝑦𝑘−ỹ𝑘)2𝑛

𝑘=1

∑ (𝑦𝑘−ỹ)2𝑛
𝑘=1

                                                                                                                                                 (13) 

Where 𝑦𝑘  denotes the actual output, ỹ𝑘 represents the predicted output, and ỹ  is the mean of the actual values. An 

R2 value close to 1 signifies strong predictive performance, indicating that the model effectively captures the 

variance in the data.  

The final models shown in Figure (6a–6f) were selected based on achieving the lowest STD and MSE values, 

along with the highest R², ensuring both accuracy and reliability in predicting water quality. 
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Figure (6a–6f): Architecture of Best Performing ANN models 

2.6. Calculation of Feature Importance for the Most Influencing Parameters 

A Random Forest regression approach was employed to assess the relative importance of predictor 

variables in influencing the response variable(L. 2001). This method is particularly effective in handling non-linear 

relationships and providing insights into the contribution of each feature. A Random Forest model, consisting of a 

specified number of trees (e.g., 100), was trained using the predictor matrix X and the response variable Y. Model 

performance was evaluated using the Out-of-Bag (OOB) error, which provides an unbiased estimate of the 

prediction error.  
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A permutation-based feature importance method was used to quantify each feature's importance. This 

involved permuting the values of each feature and measuring the resulting increase in OOB error. The feature 

importance FIj for each feature j was calculated as the average difference between the original OOB error and the 

OOB error after permuting the feature’s values: 

FIj = 
1

T
 ∑ (OOB Errorperm.j

t − OOB Errororig
t )T

t=1                                                                                                                     (14) 

Where; T is the total number of trees, OOB Errorperm.j
t  is the OOB error after permuting  

feature j and OOB Errororig
t  is the original OOB error. 

The feature importance scores were then normalized to provide a probabilistic interpretation. This 

normalization was performed by dividing each feature’s importance score by the sum of the importance scores for 

all features: 

NFIj = 
FIj 

∑ FIk 
p
k=1

                                                                                                                                                       (15) 

Where p represents the total number of features. This process allowed for the identification of the most significant 

predictor variables, providing valuable insights into their relative contributions to predicting the response variable. 

2.7. Sensitivity Analysis 

Sensitivity analysis was performed across various predictive models to evaluate the impact of changes in 

key input variables on the CWQI (Ibrahim J, Chen MH 2009). The process began with the normalization of input 

variables to standardize their scales, ensuring all the models could handle them effectively. Several models, 

including Linear Regression, Polynomial Regression, Decision Trees, Random Forests, and Neural Networks, were 

trained and validated using k-fold cross-validation (k = 5). The best-performing model was selected based on its 

Root Mean Squared Error (RMSE) and coefficient of determination (R²) During the sensitivity analysis, key input 

variables were varied systematically within a range of -50% to +50% to evaluate their impact on the predicted 

CWQI. The model’s predictions were recorded for each variation, and the mean CWQI was calculated, allowing 

the identification of the most influential variables in predicting water quality. 

3. Results and Discussion 

3.1. Artificial Neural Network Models for Estimating WQIs 

The best-performing neural network structures for each category are shown in Figure (6a–6f), with 

standard deviation (STD), mean squared error (MSE), and coefficient of determination (R²) summarized in Table 

5. The coefficient of determination (R²) presented in Figure (7a–7f) exceeds 0.97 indicating a strong correlation 

between observed Water Quality Index (WQI) values from traditional methods and those predicted by the ANN 

models.  

Table 5. Summary of Best-Performing Neural Network (NN) Models for Different Models 

Models STD MSE R²  

Biological model 0.0263 0.007 0.99607 

Industrial model 0.0248 0.00061 0.97699 

Aquatic model 0.0279 0.00078 0.9881 

Aquatic (DO only) 0.0027 0.000007 0.99995 

Agricultural model 0.0246 0.0006 0.99232 

Overall model 0.0242 0.00058 0.99417 
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Fig. (7a–7f) Comparison of the Actual WQI and the Model Predictions  
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3.2. Artificial Neural Networks Parameters Estimation 

Table (6a-6d) summarizes the weight parameters of the artificial neural network for the biological model, 

detailing connections from inputs to successive hidden layers (H1, H2, H3) and ultimately to the output layer. 

Table 6. a. Initial Input-to-Hidden Layer 1 Weight Parameters for Biological Model 

Predictors 

Predicted 

Hidden Layer (1) 

H(1,1) H(1,2) H(1,3) H(1,4) H(1,5) H(1,6) H(1,7) H(1,8) H(1,9) H(1,10) 

FC -4.04 1.74 3.92 3.88 0.09 0.72 -0.41 21.09 3.13 3.87 

BOD -1.80 4.07 2.06 -2.33 4.53 -4.35 4.38 -0.01 -10.3 -2.61 

Table 6.b. Hidden Layer 1 to Hidden Layer 2 Weight Parameters for Biological Model 

Predictors 

Predicted 

Hidden Layer (2) 

H(2,1) H(2,2) H(2,3) H(2,4) H(2,5) H(2,6) H(2,7) H(2,8) H(2,9) H(2,10) 

H(1,1) -0.56 0.47 -0.29 -1.05 0.76 0.45 -0.67 -0.28 -0.73 -0.36 

H(1,2) 0.31 0.94 0.38 0.35 0.42 0.95 -0.92 -0.15 -0.94 -0.59 

H(1,3) 0.21 0.09 0.57 -0.78 -0.66 -0.43 -0.80 0.40 -1.11 1.03 

H(1,4) -0.55 0.004 -0.73 0.27 1.18 -0.73 -0.30 0.51 -0.34 -0.48 

H(1,5) -0.34 -0.62 -0.48 -0.05 -0.68 0.35 -0.24 -1.05 0.24 0.49 

H(1,6) 0.07 0.33 -0.33 -0.36 -0.10 0.37 0.54 -0.62 -0.05 0.18 

H(1,7) -0.84 0.40 0.02 0.21 0.93 0.07 -0.61 0.43 0.21 -0.08 

H(1,8) 0.85 -0.52 -14.2 -20.6 -1.81 16.87 0.48 1.44 -0.64 0.78 

H(1,9) -0.57 -0.25 -1.50 -0.05 6.09 -1.40 -5.42 -0.76 4.51 0.05 

H(1,10) 0.59 -0.77 0.04 0.65 -0.54 0.37 -0.62 -0.39 -0.06 -0.73 

Table 6.c. Hidden Layer 2 to Hidden Layer 3 Weight Parameters 

Predictors 

Predicted 

Hidden Layer (3) 

H(3,1) H(3,2) H(3,3) H(3,4) H(3,5) H(3,6) H(3,7) H(3,8) H(3,9) H(3,10) 

H(2,1) -0.20 -1.07 0.12 -0.84 0.10 -0.06 -0.20 0.62 0.04 0.06 

H(2,2) -0.30 -0.05 -0.35 0.33 -0.27 -0.91 0.66 0.78 0.31 -0.29 

H(2,3) 0.11 -0.15 0.59 3.90 -0.92 0.88 -0.58 4.94 -0.12 -12.6 

H(2,4) 0.62 -0.44 0.57 6.84 -0.51 -0.70 -0.33 6.82 -0.94 -18.1 

H(2,5) 0.22 1.29 -0.14 1.57 0.18 -4.71 -1.89 0.24 1.33 -2.46 

H(2,6) 0.29 0.23 1.05 -4.78 1.85 1.66 -0.54 -5.88 0.04 15.37 

H(2,7) 0.64 1.28 0.62 -0.01 -0.80 3.90 0.74 -0.59 1.05 -0.96 

H(2,8) -0.75 -0.97 -1.03 0.34 -1.18 0.72 0.70 0.33 -0.28 -1.04 

H(2,9) -0.38 -0.78 -0.37 -1.42 -0.41 -3.86 -0.35 -0.61 0.53 1.76 

H(2,10) -1.03 -0.58 0.42 -0.72 -0.61 -0.64 -0.48 -0.04 -0.66 -0.88 
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Table 6.d. Output Weights from Hidden Layer 3 for Biological Model 

Predictors Output 

H(3,1) 0.39 

H(3,2) 2.07 

H(3,3) -0.23 

H(3,4) -6.80 

H(3,5) 1.77 

H(3,6) -0.79 

H(3,7) -1.35 

H(3,8) 2.60 

H(3,9) -1.31 

H(3,10) -10.79 

The weight matrices presented in Tables (6a - 6d) represent the internal structure and learning process of the 

Artificial Neural Network (ANN) developed for predicting the Biological Water Quality Index (BWQI). These 

weights define how inputs (water quality parameters) influence successive hidden layers and ultimately contribute 

to the predicted BWQI at the output layer. The strong initial weights between the input parameters, particularly 

Fecal Coliform (FC) and Biological Oxygen Demand (BOD), and the first hidden layer neurons indicate that these 

two parameters play a dominant role in shaping the predicted BWQI. As the signal propagates through deeper 

layers, these influences are refined, capturing complex interactions between biological pollutants. 

3.3. WQIs results for Different Pollution Types along the period 2000-2023 in Gharbia Main Drai 

The analysis of WQI results for the different studied categories shows that the trend of WQIs is the same across 

all water quality stations in the Gharbia Main Drain and its branches. The results for MG08 are shown in the given 

Figure 8. The Industrial model ranges between 92 and 100, placing it in the Good to Excellent category of water 

quality. The Agricultural model shows values between 59 and 75, which fall within the Marginal to Fair category. 

The overall Water Quality Index (WQI) for this site ranges between 54 and 69, indicating a Marginal to Fair water 

quality status. In contrast, the Biological model exhibits values ranging from 18 to 47, placing it in the Poor 

category. Similarly, the Aquatic model ranges from 10 to 19, which also falls into the Poor category. 

As a result, Biological pollution is the dominant concern, as the lowest values of WQI were observed in 

both the Biological and Aquatic categories. This highlights that the most significant impact on water quality in the 

Gharbia Drain comes from biological pollutants. 

 

Figure 8: WQIs for Different Categories at MG08 (2000-2023) 

0

20

40

60

80

100

Biological Industrial Aquatic Agricultural Overall

W
at

e
r 

Q
u

al
it

y 
In

d
e

x 
(%

)

2000-2005 2006-2010

2011-2015 2017-2023



Delta University Scientific Journal Vol.08 - Iss.01 (2025) 274-301 

 

Page | 290 

3.4. Sites Analysis for Annual Biological Pollution in the Gharbia Main Drain (2000-2023) 

The analysis of the Biological Water Quality Index (BWQI) from 2000 to 2023, as shown in Figure 9, reveals 

significant variations in pollution levels across key monitoring sites along the Gharbia Main Drain: MG02, MG28, 

MG08, and MG14. Among these sites, MG14 exhibited the highest biological water quality throughout the study 

period, with its BWQI increasing from 43 in 2000–2005 to 50 in 2017–2023. MG08 showed a clear upward trend, 

rising from 18 in 2000–2005 to 47 in 2017–2023. Similarly, MG28 experienced a gradual increase, with BWQI 

improving from 16 to 34 over the same period. In contrast, MG02, located at the inlet of the drain, consistently 

recorded the lowest biological water quality. Its BWQI increased only slightly, from 8 in 2000–2005 to 23 in 2017–

2023. Overall, the data demonstrate that MG14 stands out as the least polluted site, while MG02 remains the most 

polluted throughout the monitoring period. 

This analysis demonstrates that biological pollution is highest at the inlet of the drain and gradually improves 

toward the outfall. Additionally, there has been a noticeable reduction in biological pollution with each successive 

period, which aligns with the establishment of wastewater treatment plants in the catchment area of the Gharbia 

Main Drain by the government in recent years. 

 

Figure 9: Average BWQI across Main Sites (2000-2023) 

3.5. Seasonal Variations in Biological Pollution in the Gharbia Main Drain (2000-2023) 

The seasonal variations in water quality across the monitoring sites of the Gharbia Main Drain reveal 

distinct trends over the periods analyzed as shown in Fig. (10a–10d). At MG02, spring and summer consistently 

exhibited the highest biological water quality across the monitored seasons. During summer, BWQI increased from 

6 in 2000–2005 to 33 in 2017–2023. Spring BWQI followed a fluctuating pattern, starting at 11 in 2000–2005, 

rising to 19 in 2006–2010, then dropping to 10 in 2011–2015, before improving again to 24 in 2017–2023. Winter 

and fall consistently showed lower biological water quality, with fall BWQI increasing from 5 to 23, and winter 

BWQI starting at 9, peaking at 13 in 2011–2015, and then slightly declining to 12 in 2017–2023. 

At MG28, winter exhibited the greatest improvement, with BWQI rising from 10 in 2000–2005 to 45 in 
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remained relatively stable, starting at 26 and fluctuating slightly to 31 in the final period. Fall initially improved 

from 13 to 34 by 2006–2010, but then dropped to 16 in 2011–2015, before recovering to 24 in 2017–2023. 

MG08 shows the most significant improvements in summer and spring. Spring consistently showed the 

highest biological water quality, with BWQI rising from 14 in 2000–2005 to 57 in 2017–2023. Summer followed 

a similar improvement trend, increasing from 34 to 51 over the same period. Fall and winter remain the worst, , 

with fall BWQI rising from 16 to 41, and winter BWQI increasing from 9 to 37. 

At MG14, both summer and spring are the best seasons. Spring initially had the highest BWQI, rising 

from 38 in 2000–2005 to a peak of 86 in 2011–2015, but then declining to 44 in 2017–2023. Summer BWQI 

dropped from 77 in 2000–2005 to 52 in 2006–2010 and remained around the same level in the later periods, ending 

at 51. While winter and fall remain the worst. 

These seasonal trends indicate that water quality improvements have occurred across all sites, although 

some fluctuations remain, particularly in spring and summer at some locations. The overall seasonal pattern 

highlights that biological water quality tends to improve more in spring and summer, while fall and winter often 

reflect poorer conditions. 

 

Figure (10a-10d): Seasonal Variation of BWQI Across Main Sites (2000-2023) 

3.6. Annual Analysis of Biological Pollution at Branch Sites in the Gharbia Drain (2000-2023) 

The analysis of the Biological Water Quality Index (BWQI) from 2000 to 2023, as illustrated in the given 

Figure 11, reveals significant variations in water quality across key monitoring sites: MG12, MG09, MG07, MG05, 

MG04, and MG02. Among these sites, MG12 (Hafir Shehab El Din Pump Station) demonstrated the most 

substantial improvement, with its BWQI increasing from 46 (Poor) in 2000-2005 to 65 (Marginal) in 2017-2023, 

indicating the best water quality. MG09 also showed moderate improvement, with BWQI values fluctuating 
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between25 (Poor) in 2000-2005 and 49 (Marginal) in 2017-2023. MG07 experienced considerable progress, with 

BWQI rising from 25 (Poor) to 46 (Marginal) by 2017-2023, reflecting a notable reduction in pollution. 

In contrast, MG05 saw moderate improvement, with its BWQI increasing from 22 (Poor) in 2000-2005 to 

35 (Poor) by 2017-2023. MG04 exhibited poor water quality throughout the study period, with BWQI values rising 

only slightly from 21 (Poor) to 29 (Poor). MG02 consistently had the worst water quality, with BWQI starting at 8 

(Poor) and only reaching 23 (Poor) by 2017-2023. 

This analysis indicates that the upstream branch drains contribute the most to pollution, with sites near the 

inlet of the drain (such as MG02, MG04, and MG05) consistently showing the poorest water quality. However, as 

the drain progresses downstream, water quality improves. Downstream branch drains, such as MG07, MG09, and 

MG12, contribute to this overall improvement. As a result, part of the water from these downstream branches 

(MG07, MG09, and MG12) may be suitable for reuse by mixing it with nearby canals before it flows into the main 

drain. Additionally, there has been a noticeable improvement in water quality across all sites over the years, 

reflecting ongoing efforts to reduce pollution. 

 

Figure 11: Average BWQI across Branch Sites (2000-2023) 
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distinct seasonal variation, with summer and spring having better water quality, with summer BWQI improving 

from 25 to 47 and spring BWQI increasing from 18 to 40. In contrast, fall and winter showed lower BWQI values, 

with fall rising only slightly from 24 to 25, and winter BWQI increasing from 22 to 28. 

For MG07, summer is the best season, with BWQI increasing from 39 to 50. Spring and fall also showed 

gradual improvement, with spring rising from 11 to 42 and fall improving from 29 to 45. Winter, while improving 

from 20 to 44.9, remained slightly lower than the other seasons, reflecting lower water quality. MG09 fall 

demonstrated the highest biological water quality in recent periods, with BWQI rising from 24 to 57 by 2017–2023. 

Spring also improved steadily, rising from 15 to 52. Summer and winter followed similar trends. 

Finally, MG12 demonstrates the highest water quality results across all seasons, with significant 

improvements over time, particularly in the more recent periods, where most seasons reach much higher BWQI 

values, indicating excellent water quality. Spring consistently exhibited the highest BWQI values, improving from 

51 in 2000–2005 to 92 in 2017–2023. Winter BWQI also improved substantially from 38 to 63 over the same 

period. Summer and fall showed less dramatic improvements, with summer stabilizing at around 54, and fall 

improving from 51 to 52. Among all the monitored sites, MG12 consistently demonstrated the best biological water 

quality across all seasons. To reinforce what has been mentioned in previous results, the water from MG09 and 

MG12, particularly during the spring season, can be reused by mixing it with nearby canals. 

 

Figure (12a-12f) Seasonal Variation of BWQI across Branch Sites (2000-2023) 

3.8. Feature Importance for Water Quality Parameters Results 

As shown in Table 7, Fecal Coliform (FC) exhibited the highest feature importance for the biological 

category, contributing 61.56% to the overall pollution levels, followed by Biological Oxygen Demand (BOD) at 

38.44%. This indicates that FC and BOD play a dominant role in the biological pollution load. 
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Table 7. Biological parameters independent variables importance 

Data Feature importance Normalized importance 

FC 61.56% 100%  

BOD 38.44% 59.54% 

For the industrial category, illustrated in Table 8, Chemical Oxygen Demand (COD) was identified as the 

most critical feature, contributing 80.01% to pollution levels. Other variables showed much smaller importance, 

highlighting the prominent role of COD in industrial waste affecting the water quality of the drain. 

Table 8. Industrial parameters independent variables importance 

Data Feature importance Normalized importance 

COD 80.01% 100% 

Cd 2.46% 3.07% 

Cu 0.94% 1.17% 

Fe 4.57% 5.71% 

Mn 1.74% 2.17% 

Zn 0.16% 0.199% 

Ni 2.26% 2.82% 

Pb 7.85 % 9.81% 

In the case of the aquatic category, as placed in Table 9, Dissolved Oxygen (DO) emerged as the most 

influential factor, contributing a striking 96.19%. This dominance reflects the importance of oxygen depletion as a 

key indicator of aquatic pollution, while other variables, such as Total Suspended Solids (TSS) and pH, contributed 

less than 3%. Therefore, when modeling the aquatic category, DO alone is included. 

Table 9. Aquatic parameters independent variables importance 

Data Feature importance Normalized importance 

DO 96.19% 100% 

TSS 2.34% 2.43% 

pH 1.47% 1.53% 

 

Agricultural category, as indicated in Table 10, was primarily driven by Ammonium (NH₄), which had a 

feature importance of 30.72%, followed by Total Dissolved Solids (TDS) at 25.63% and Electrical Conductivity 

(EC) at 24.81%. Other variables, such as Total Nitrogen (TN) at 12.16%, Nitrate (NO₃) at 4.69%, and Total 

Phosphorus (TP) at 1.99%, contributed less significantly.  

Table 10. Agricultural parameters independent variables importance 

Data Feature importance Normalized importance 

EC 24.81% 80.7% 

TDS 25.63% 83.5% 

TP 1.99% 6.5% 

NO₃ 4.69% 1.44% 

NH₄ 30.72% 100% 

TN 12.16% 39.5% 
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3.9. Sensitivity Analysis for Water Quality Parameters Results 

For biological category, as shown in Figure 13, sensitivity analysis revealed that changes in Fecal 

Coliform (FC) and Biochemical Oxygen Demand (BOD) have a pronounced effect on pollution levels. A 10% 

increase in FC and BOD levels led to a significant decrease in the Water Quality Index (WQI), indicating that 

biological pollution is highly sensitive to these fluctuations. This underscores the need to focus on managing 

sources of biological contamination to improve water quality. 

 

Figure 13: Biological Sensitivity Analysis 

In the case of the industrial category, as presented in Figure 14, sensitivity analysis showed that Chemical 

Oxygen Demand (COD) is highly sensitive to changes. Even a small percentage change in COD levels resulted in 

noticeable shifts in the Water Quality Index (WQI), reaffirming COD’s dominant role in affecting water quality. 

In contrast, other industrial parameters exhibited significantly lower sensitivity compared to COD. 

 
Figure 14: Industrial Sensitivity Analysis 
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For the aquatic category, as outlined in Figure 15, Dissolved Oxygen (DO) demonstrated extreme 

sensitivity to changes, with any variation in DO levels causing a substantial impact on the Water Quality Index 

(WQI). This suggests that improving biological pollution parameters is essential for maintaining adequate DO 

levels, which is crucial for supporting aquatic life in the drain. 

 

Figure 15: Aquatic Sensitivity Analysis 

The agricultural category, as mentioned in Figure 16, including Ammonium (NH₄), Total Dissolved 

Solids (TDS), and Electrical Conductivity (EC), were also sensitive to changes. A 10% increase in these levels 

led to a marked rise in agricultural pollution, as measured by the Water Quality Index (WQI). The other 

parameters exhibited moderate sensitivity.   

 

Figure 16: Agricultural Sensitivity Analysis 
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3.10 . Comparison between Study Findings and Previous Research on Water Quality in Gharbia Main Drain 

The findings of this study align with several key observations from previous research on the water quality of 

the Gharbia Main Drain while also presenting distinctive differences. Consistent with the studies conducted by 

(Osman et al., 2023),(Abd-Elfattah et al., 2021), and (Darwish et al. 2023), our research identified biological 

pollution, characterized by high Fecal Coliform (FC) and Biological Oxygen Demand (BOD) levels, as a dominant 

contributor to contamination in the drain.  Despite agreeing with (El-Razak et al., 2023)  that there are  seasonal 

trends in pollution levels in the Gharbia drain, our results disagreed with this research in identifying the seasons 

during which the most severe water quality degradation occurs. 

Additionally, while studies such as (El Gammal 2016), reported significant five water quality parameters as 

the most influential when evaluating Gharbia Drain water quality, our study identified seven key parameters.  

Furthermore,  unlike previous studies that emphasized the unsuitability of the water for irrigation due to high 

salinity and microbial contamination (Darwish et al., 2023; El-Razik et al., 2023) along the whole Gharbia Drain, 

our findings indicate gradual improvements in water quality at downstream branches, suggesting the potential for 

reuse under specific conditions. Moreover, our study extends beyond past works by employing Artificial Neural 

Networks (ANNs) to predict Water Quality Indices (WQIs), demonstrating superior accuracy and predictive 

reliability compared to traditional statistical methods. These advancements highlight the efficacy of ANNs in 

capturing nonlinear relationships in water quality data, offering a more robust framework for water management 

decisions. 

Conclusion 

From the above research, the following can be concluded: 

• The results of the feature importance and sensitivity analysis identified seven key parameters as the most 

influential when evaluating WQIs: Fecal Coliform (FC) and Biological Oxygen Demand (BOD) are the 

primary factors influencing biological pollution. In the industrial category, Chemical Oxygen Demand (COD) 

plays a dominant role. For aquatic pollution, Dissolved Oxygen (DO) is the most critical parameter, while 

Ammonium (NH₄), Total Dissolved Solids (TDS), and Electrical Conductivity (EC) are the key drivers of 

agricultural pollution. 

• The most significant source of pollution in the Gharbia Drain is driven by biological pollutants, while 

agricultural pollution is moderate. On the other hand, there is no significant industrial pollution observed. 

Additionally, across all studied seasons, summer has the best water quality, followed by spring. Winter shows 

moderate improvement but still has higher pollution levels. Fall is the worst season. 

• The research investigated water quality parameters over different periods (2000-2005), (2006-2010), (2011-

2015), and (2017-2023). In recent years, a steady reduction has been observed in biological pollution over 

time. This aligns with the government's efforts to establish wastewater treatment plants in the Gharbia Main 

Drain catchment area. 

•  Segaaya P.S., Samatay P.S., and P.S. No. 5 Branch drains (located at the upstream reach of the drain) are the 

major contributors to pollution, showing the poorest water quality indices. In contrast, downstream branch 

drains (P.S. No. 6, P.S. No. 4, and Hafir Shehab El Din P.S.) exhibit better water quality, making them suitable 

for water reuse by mixing it with nearby canals before entering the main drain. 

Recommendations for Further Studies 

Based on the study’s conclusion that biological pollution is a major concern, the following recommendations are 

provided for wastewater treatment and policy interventions to improve water quality in the studied drain. A 

multifaceted approach to wastewater treatment is essential; establishing a thorough wastewater treatment system 

can effectively eliminate biological contaminants from the water. This approach should encompass primary, 

secondary, and tertiary treatment phases to ensure compliance with established quality standards. Additionally, the 
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implementation of policies that encourage responsible waste disposal is crucial. The decision tree methodology, a 

well-established technique in decision-making, involves constructing a tree-like diagram that outlines decisions 

and their potential outcomes. This methodology is considered instrumental in supporting decisions that improve 

water quality in drainage systems and mitigate the sources of biological pollution. 

List of Abbreviations 

Abbreviation Water Quality Parameter 

BOD Biological Oxygen Demand 

Cd Cadmium 

COD Chemical Oxygen Demand 

Cu Copper 

DO Dissolved Oxygen 

EC Electrical Conductivity 

FC Fecal Coliform 

Fe Iron 

Mn Manganese 

NH4 Ammonium 

Ni Nickel 

NO3 Nitrate 

Pb Lead 

pH Hydrogen Ion Concentration 

TDS Total Dissolved Solids 

TN Total Nitrogen 

TP Total Phosphorus 

TSS Total Suspended Solids 

Zn Zinc 
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