

Delta University Scientific Journal Journal home page: https://dusj.journals.ekb.eg

The Relation between Different body weights and Center of Pressure Displacement in adolescents during quiet standing: a review

Amira H. Mohammed¹, Mohamed N. Al Khouli¹, Dina Salah Noaman^{1*}

¹Department of Physical Therapy for Pediatrics and its Surgeries, Faculty of Physical Therapy, Delta University for Science and Technology, Gamasa, Egypt.

*Correspondence: Dina Salah Noaman, Department of Physical Therapy for Pediatrics and its Surgeries, Faculty of Physical Therapy, Delta University for Science and Technology, Gamasa, Egypt. E-mail:dinas2441@gmail.com, Tel: 01090261291.

ABSTRACT

Background: Obesity, overweight, and underweight conditions, particularly during adolescence, present significant health challenges. While obesity is widely recognized as a public health crisis, underweight individuals also face health risks. Given the critical role of postural stability in maintaining equilibrium and preventing falls. **Purpose:** This review aimed to illustrate the relation between different body weights and center of pressure deviations throughout the direction of displacement and sway length and average velocity and oscillatory swing. **Methods:** The published researches that studied the relation between body weight and center of pressure since 1990 were assessed according to CONSORT checklist. Fair to good quality researches were included, while low quality researches were excluded.

Results: The reviewed studies consistently demonstrate a significant association between increased body weight and impaired postural stability. Obese individuals exhibited larger sway parameters, including increased COP displacement and velocity, compared to normal-weight individuals. This impairment was particularly evident in conditions requiring greater postural control, such as during quiet standing with eyes closed or on unstable surfaces. **Conclusion:** Obesity has been shown to compromise postural stability, characterized by increased sway and decreased balance control. Addressing weight-related issues is essential for improving balance and reducing fall risk, particularly in obese individuals.

Keywords: obesity, underweight, postural stability, center of pressure, sway.

1. Introduction

Adolescent obesity is classified according to the World Health Organization (WHO) criteria for ages 5-19 years: obese as a BMI-for-age percentile \geq 95th, and overweight as a body mass index (BMI)-for-age percentile between the 85th and 95th percentiles (**Lob-Corzilius, 2007**). Underweight can be defined in several ways. It may refer to

low weight for height, defined as a BMI <18.5, or a weight that is 15-20% below the typical weight for a person's age (**WHO**, **1995**).

Healthy and normal weight in adolescents is an urgent public concern reflecting socio-economic and political conditions, since it determines the future of the country, its intellectual, economic, scientific potentials. Age-and-sex growth charts developed by the U.S. Centers for Disease Control and Prevention (CDC) were used to categorize each adolescent normal weight into (BMI \geq 5th and <85th percentile), (NCHS\CDC, 2014).

World Health Organization defines underweight as a BMI below the 5th percentile for age and gender CDC growth chart. Thinness, as per WHO-BMI for age criteria is the condition where the Z scores for BMI for age fall below 2 standard deviations (SD) of normal values (**Khasnutdinova and Grjibovski, 2010**).

Postural control is any action or reaction to maintain, achieve or restore the balance in any static or dynamic posture. While Balance is the state of equilibrium whereby the summation of forces, acting on the body is zero (**Pollock et al., 2000**). Complex interactions of the sensory, motor, vestibular, and visual systems aiming to balance maintenance or movements or center of gravity displacements, which also trigger the balance correction causing the body weight distribution to both lower extremities in a way that does not cause fall (**Taube et al., 2006**).

Center of gravity (COG) is an important component during evaluating balance and posture stability. It is often measured with center of pressure (COP) because COG is hardly to be quantified. According to Lafage et al., (2008) the COG located at the midpoint of the base of support (BOS) of an individual ideal posture. COP excursion and velocity are indicators of control COG and are key factors for identifying proper posture and balance keeping up. COP excursion is defined by **Pineda et al., (2020)** as displacement in the anterior/posterior and medial/lateral directions within the base of support (perimeter around the feet).

Posturographic analysis is an equipment to quantitatively measure body sways during quiet erect posture or during the performance of different tasks in the standing position (**Şimşek and Şimşek, 2020**). Commonly divided into static posturographic analysis, when the individual is quiet erect posture during the testing procedure, and dynamic postrugraphic analysis, when a response to a disturbance applied on the individual during testing procedure. The most common posturographic measure used in the assessment of postural control is the COP. The COP is the point of application of the resultant from the vertical force's action on the support's surface. The equipment most often used to evaluate the COP is the force plate (**Freitas et al, 2005**).

Static posturography is one of these methods, which contributes to the assessment of postural stability in an accurate and objective way. This method uses a platform that registers the force of the feet pressure and moment of this pressure force for the standing person during the testing procedure. Based on the reading, the computer software of the platform calculates the center of pressure (COP) coordination, when the person is standing freely (Samson and Crowe, 1996; Carpenter et al., 2001).

2. Material and methods

2.1. Design of the study

Narrative review

2.2 Participants

The published researches that studied the relation between body weight and center of pressure since 1990 were assessed according to CONSORT checklist (APPINDIX I). Fair to good quality researches were included, while low quality researches were excluded.

2.3 Materials and methods

The reviewed literature in this article were originated from google scholar and bumped and Elsevier database. Twenty three research paper were illustrated with detailed explanation and analyzed as represented in table (1). Further more research papers were deliberated in discussion section.

Discussion

A positive correlation between postural instability and BMI was reported by **Greve et al.**, (2007) who observed greater shifts in both lateral and anteroposterior directions by obese subjects in order to maintain stability. Increased Overall Body Weight leading to greater AP and ML shifts during stance.

There are at least two reasons why postural stability is influenced by obesity. The first reason is related to the contribution made by an altered body geometry in obese individuals. In the present study, pelvic anterior tilt was significantly higher in the obese group. The degree of pelvic tilt is associated with lumbar posture, because the lumbar spine is connected to the pelvis and an increased anterior pelvic tilt can lead to excessive lumbar extension **Levine and Whittle (1996)**. The increased anterior pelvic tilt in obese individuals might be caused by an alteration of body geometry due to increased abdominal fat.

Onyemaechi et al., (2016) reported that obese individuals had a significantly higher mean lumbar lordosis angle. To demonstrate the mechanism whereby upright standing balance is achieved, the human body is often compared with an inverted pendulum model **Gage et al.**, (2004), and because anterior tilts increased by adipose tissue accumulation in the abdominal area, body COG is displaced forward at the ankle joint **Corbeil et al.**, (2001) **and Berrigan et al.**, (2006), which means that obese individuals need to adopt a larger corrective ankle torque in order to counter a greater gravitational torque. **Corbeil et al.**, (2001) also suggested that obese individuals with abnormal amounts of abdominal body fat may be at greater risk of falling than normal-weight individuals.

The second reason of the relationship between postural stability and increased body weight is the contribution made by foot mechanoreceptors to balance control. Several studies reported that obese individuals have a larger plantar contact area and greater mean pressure values (**Birtane and Tuna, 2004; Gravante et al., 2003**). For example, **Hills et al., (2001**) showed significantly greater pressure in the heels, midfoot, and metatarsal head in obese individuals. These results are important because desensitization of mechanoreceptor.

Generally, balance control in ML direction occurs at the hip and trunk of the body while the pelvis generates ML motion in the lateral direction (**Shumway-Cook and Woollacott, 2007**). When descending response of the body segment takes place, head movement will occur first, followed by trunk and hip movements. The data revealed that there was significant increase in ML sway for the obese (**Blaszczyk et al., 2007**).

Menegoni et al., (2009) did not notice significant differences between obese and normal-weight women in ML COP displacements. Due to the reduction in body weight, (Cieślińska-Świder and Blaszczyk, 2019) applied (physical activity training with 60%-70% from maximum HR) he did not notice the influence of therapy on the COP total velocities during standing, average speed and maximal velocity in obese women before and after weight loss.

Also, the was no statistical significant difference between obese and healthy male in (AP and ML And MV mean velocity during applying static balance test in OE conditions reported by **Menegoni et al., (2011).** Throughout the evaluation for obese, overweight, normal weight and underweight for 26 adult women after 30 second of quit standing trial there were statistical significant different between overweight and normal weight in mean velocity and this against our statistical result that was not significant between both groups normal and overweight average velocity (**Sibella et al., 2024**).

Hue et al., (2007) estimated the contribution of body weight to postural stability in conditions of vision and no vision. With eyes open, body weight accounted for 52% of variance in balance stability. With eyes closed, the contribution of body weight was 54% of variance. The study noted a strong correlation between increased body weight and decreased postural stability, as evidenced by increased COP speed to maintain stability, decreased mean peak stability times and increased mean distance between stable positions

It is clarified that obese persons are less responsive to perturbation than normal weight subjects. One potential explanation for this decreased sensitivity is the increase in mean pressure that the mechanoreceptors – the body's sensory receptor Structural and functional declines of the somatosensory systems occur with increase in body weight and these changes are associated by postural stability. Several studies observed an increase in plantar contact areas and pressure levels in the heel, midfoot and metatarsal areas (**Fabris et al., 2006; Birtane and Tuna, 2004; Hills et al., 2001**). It is possible that this constant and elevated pressure interferes with the function of the mechanoreceptors that is necessary to inform the body's response to oscillation. Whatever the mechanism, it seems likely that obese individuals are challenged in recovering balance once a postural perturbation occurs.

Mean COP displacement speed, and range values in A/P and M/L and speed were significantly reduced in obese and morbid obese groups after hypocaloric diet and post bariatric due to weight loss reported by **Handrigan** et al., (2010).

For underweight an observational study done with 75 subjects from both genders, between 18-23 years were included in this study the participant assigned to 3 groups based on BMI calculation equation. Group A-underweight, group B-normal and group C-obese assessment was performed for both eyes conditions opened and closed, found that the sway increased to a maximum in AP direction and minimum sway in ML direction with no statistical significance difference for underweight individuals in comparison to normal and this could be due to localized plantar flexor fatigue that cause impairment to postural control in underweight young adult as developed by **Tharani and Kamatchi (2019)**.

It is reported in the underweight individuals, the deficient body mass could have influenced foot morphology, could led to the development of greater neuromuscular imbalances. It is clear that reduced position sense in underweight individuals may lead to increased risk for falls and serious injuries during everyday activities parameters (**Paschalis et al., 2013**).

Changes in body mass index affect decreasing throughout the evaluation for obese, overweight, normal weight and underweight for 26 adult women after 30 second of quit standing trial there were statistical significant different between underweight and normal weight in mean velocity and the other group also except between (obese and underweight) expressed that there were a statically difference between both groups normal and underweight in average velocity (**Sibella et al., 2024**).

The ability of muscle tone which also affects the balance of the human body Muscle strength is one of the factors that affect balance. A person with an ideal BMI category has better muscle strength than a person with a non-ideal BMI category because his body fat composition is relatively low and his muscle composition is relatively high (**Handayani et al., 2022**). This is what makes the ability to maintain postural balance is also better malnutrition can cause reduce muscle strength (**Intan et al., 2020**).

So, it can be concluded that individuals with non-ideal BMI tend to experience a decrease in muscle strength. Weak muscle conditions will have an impact on a decrease in postural balance because of increasing average speed indicated to impaired postural control so that underweight have a higher cop average velocity due to (reduced proprioception, coordination, muscle mass and tone, and strength (Handayani et al., 2022; Azi et al., 2020).

Obese subjects showed a longer length and a larger area of sway than lean and overweight subjects produced a larger increase of sway in obese subjects than in lean and overweight subjects (This finding supports that obese subjects may be more dependent on vision to control balance. In addition, obese subjects uses their somatosensorial to control posture differently than lean and overweight subjects (**Cruz-Gómez et al., 2011**).

Limited mobility in obese individuals accelerates physiological repercussions through increased adipose burden and intramuscular fat, reducing muscle quality and tone. Indeed, increased sway length and sway velocity about a COP are presumed identifiers of at-risk populations (**Wearing et al., 2014**).

A significant increase in sway parameters (circular area, ellipse area, and path length) were also observed in obese fallers. Traditionally, greater COP displacements have been linked with less stability and, consequently, increased fall risk. This implies the motor system was unable to adjust to the demands inherent in obesity during stance, resulting in diminished adaptability and stability. In this context, the increase in sway area and path length may be a result of impaired feedback control or impaired proprioception/vision/vestibular system leading to a reduced adaptive capacity of the postural system (**Pagnotti et al., 2020; Manor et al., 2010**).

Also evaluated the effect of obesity on mean peaks and mean distance. The mean peaks correspond to the time in which the COP is relatively stable and the mean distance corresponds to the distance between stability zones. Consequently, shorter mean peaks (time) and larger mean distance between peaks, as observed in obese individuals, indicate a more instable COP. The discriminative power of these two COP sway parameters is greater than those of other global parameters to distinguish among sensory and pathological conditions in the general framework of balance control (**Dutil et al., 2013**).

The study noted a strong correlation between increased body weight and decreased postural stability, as evidenced by increased COP speed to maintain stability, decreased mean peak stability times and increased mean distance between stable positions. Also cog velocity and total sway distance were significantly greater in the obese group confirmed by (**Son, 2016**).

As the increased mass affects the mechanical and sensorial systems involved in postural control, the central nervous system has to adapt its control actions to maintain balance. Sensory system input dramatically reduced the postural balance of high weight children compared to normal children. In addition to the system that might be less effective in over weight and obese children is the somatosensory system. The excessive pressure on these children's feet might alter the activity of the plantar cutaneous sensory receptors; this may reduce the sensory feedback required to coordinate the body's position and to maintain postural balance also poor postural balance in obese and overweight children may be associated with more frequent falls and with a higher risk of fractures (**Steinberg et al., 2018**).

Mean speed is often considered to represent an overall amount of activity necessary to maintain stability. Mean peak corresponds to time instants in which the ankle torque and the associated motor commands are relatively stable and mean distance represents the distance between one relative stable region to another one. With the increase of body weight, the peaks decreased and the distance between stable regions increased significantly (**Baratto et al., 2006**). Overweight and obese children have better stability parameters such as ellipse area, AP, ML, total path length than children with normal body weight (**Rusek et al., 2021; Rezaeipour, 2018**).

A study conducted on female collages age between 20-25 y old to illustrate the relation between BMI for (obese, overweight, normal and underweight) and static balance in the result was significant negative moderate-tostrong correlation between BMI and postural balance for static balance with eyes open and closed eye on different surfaces during test (Almurdi, 2024).

Melzer and Oddsson, (2016) used stabilogram-diffusion analysis to evaluate underlying mechanisms of postural control characteristics of obese older adults. The higher short-term scaling exponent values indicated an increase in persistence, meaning that body sway tends to continue moving in an ongoing direction when open-loop control dominates. Moreover, an increase in transition displacement and transition time interval values indicated that closed-loop control began to dominate behavior at longer time intervals and at higher amplitudes of sway in the obese group compared to the normal weight group increased risk of fall (Melzer and Oddsson, 2016).

Also, Cieślińska-Świder and Blaszczyk, (2019) reported that total maxima velocity in ML and AP summation) before and after weight loss in obese group in obese woman the result was that there was no Statistical significant difference.

The presence of higher oscillations in obese individuals with respect to controls, two hypotheses are proposed by literature: 1) the reduction of plantar sensitivity due to the hyperactivation of the plantar mechanoreceptors for the continuous pressure of supporting the large mass; and 2) the presence of high mechanical request in obese subjects due to a whole body center of mass further away from the axis of rotation causing a greater gravitational torque the obese individuals present larger excursions of COP, which are characterized by the same velocity of oscillation if compared non obese (**Capodaglio et al., 2012**).

Obese elderly females showed that their COP swing velocity (oscillation maximum and minimum) was lower than the normal weight group. Reasons for improved stability along ML direction could be of anatomical changes in response to obesity, such as more limitation of range of movement in the lower limbs and torso to the side due increasing adiposity in lower part of the body (**Rezaeipour and Apanasenko, 2018**). Higher values of

BMI and body mass components correlated with a shorter path length in both pre-pubertal and adolescent children (**Rusek et al., 2021**).

A lot of epidemiological studies suggesting that a low BMI is a risk factor of fall and instable posture due to excess sway of COP because it is thought that BMI could offer a skeletal loading, increases osseous mass and padding that guards from fractures during falls which could explain why underweight people center of pressure is higher oscillatory amplitude (**Hue et al., 2007**).

Conclusion:

Obesity is associated with impaired postural stability, characterized by increased postural sway and reduced balance control. These findings highlight the importance of addressing weight-related issues to improve postural stability and reduce the risk of falls, particularly in individuals with obesity. Future research should investigate the underlying mechanisms linking obesity to postural instability and explore targeted interventions to enhance balance control in this population.

Acknowledgements:

The authors thank for Dr. Amira H. Mohammed and Dr. Mohamed N. Al Khouli assistant professors at department of Physical Therapy for Pediatrics and its Surgeries, Faculty of Physical Therapy, Delta University for Science and Technology for their support in the conduction of this study.

Funding support

This research received no specific grant from any funding agency in the public, commercial, or medical for-profit sectors.

Conflict of Interest:

The Authors declare that there is no conflict of interest

References

Almurdi M. Postural balance and functional mobility in relation to BMI and body composition among female students at a College of Applied Medical Sciences: A cross-sectional study. Clinics. 2024;79, 100401.

Azi YPM, Amir TL, Anggita MY. Hubungan Antara Obesitas Dengan Keseimbangan Postural Pada Mahasiswa Universitas Esa Unggul. Fisioter J Ilm Fisioter. 2020; 20(1).

Baratto L, Morasso PG, Re C, Spada G. A new look at posturographic analysis in the clinical context: swaydensity versus other parameterization techniques. Motor Control 2002; 6: 246–70.

Berrigan F, Simoneau M, Tremblay A, et al. Influence of obesity on accurate and rapid arm movement performed from a standing posture. Int J Obese 2006 ; 30(12):1750e7.

Birtane M, Tuna H. The evaluation of plantar pressure distribution inobese and non-obese adults. Clin Biomech 2004; 19(10):1055e9.

Blaszczyk, J. W., Cieślinska-Świder, J., Plewa, M., Zahorska-Markiewicz, B., & Markiewicz, A. Effects of excessive body weight on postural control. Journal of biomechanics. (2009);42(9), 1295-1300.

Blaszczyk JW, Orawiec R, Duda-Klodowska D, Opala G. Assessment of postural instability in patients with parkinson's disease. Experimental Brain Research .2007; 183, 107–114.

Bonnet C T, Cherraf S, Szaffarczyk S and Rougier P R. The contribution of body weight distribution and center of pressure location in the control of mediolateral stance. Journal of biomechanics. 2014;47(7), 1603-1608.

Capodaglio P, Cimolin V, Tacchini E, Parisio C and Galli M. Balance control and balance recovery in obesity. Current Obesity Reports. 2012;1, 166-173.

Carpenter M G, Frank J S, Winter D A and Peysar, G W. Sampling duration effects on centre of pressure summary measures. Gait & posture. 2001; 13(1), 35–40. https://doi.org/10.1016/s0966-6362(00)00093-x

Cieślińska-Świder J M and Blaszczyk J W. Posturographic characteristics of the standing posture and the effects of the treatment of obesity on obese young women. 2019; 14(9), e0220962.

Corbeil P, Simoneau M, Rancourt D, et al. Increased risk for falling associated with obesity: mathematical modeling of postural control. IEEE Trans Neural Syst Rehabil Eng .2001; 9(2):126e36

Cruz-Gómez N S, Plascencia G, Villanueva-Padrón LA and Jáuregui-Renaud K. Influence of obesity and gender on the postural stability during upright stance. Obesity Facts. 2011; 4(3), 212-217.

Dutil M, Handrigan GA, Corbeil P, et al. The impact of obesity on balance control in community-dwelling older women. Age (Dordr). 2013; 35:883–890

Emara A, Mahmoud S, & Emira M. (Effect of body weight on static and dynamic posturography. The Egyptian Journal of Otolaryngology. 2020;36, 1-8.

Fabris S, Valezi A, de Souza S, Faintuch J, Cecconello I, Junior M. Computerized baropodometry in obese patients. Obes Surg 2006; 16(12): 1574-1578.

Freitas, S. M., Wieczorek, S. A., Marchetti, P. H., and Duarte, M. Age-related changes in human postural control of prolonged standing. Gait & posture.2005; 22(4), 322-330.

Gage WH, Winter DA, Frank JS, et al. Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait Posture 2004 ; 19(2):124e32.

Geldhof E, Cardon G, De Bourdeaudhuij I, Danneels L, Coorevits p, Vanderstraeten, G, and De Clercq, D. Static and dynamic standing balance: test-retest reliability and reference values in 9 to 10 year old children. European journal of pediatrics. 2006; 165, 779-786.

Gravante G, Russo G, Pomara F, et al. Comparison of ground reaction forces between obese and control young adults during quiet standing on a baropodometric platform. Clin Biomech 2003; 18(8):780e2.

Greve J, Alonso A, Bordini A, Camanho G. Correlation between body mass index and postural balance. 2007; 62(6): 717-720.

Handayani M, Sayuti M and Nadira C S. Relationship between body mass index and postural balance among student of the martial arts club malikussaleh university. 2022; 11(3), 131-137.

Handrigan G, Hue O, Simoneau M, Corbeil P, Marceau P, Marceau S and Teasdale N. Weight loss and muscular strength affect static balance control. International Journal of Obesity, 34(5), 936-942. (2010).

Hasan SS, Lichtenstein M J and Shiavi, R G .Effect of loss of balance on biomechanics platform measures of sway: influence of stance and a method for adjustment. Journal of biomechanics. 1990;23(8), 783-789.

Hills AP, Bar-Or OO, McDonald MM, Hennig EM. Plantar pressure differences between obese and non-obese adults: a biomechanical analysis. Journal of the International Association for the Study of Obesity. 2001; 25(11): 1674-1679,. <u>https://www.sensormedica.com</u>

Hue O, Simoneau M, Marcotte J, Berrigan F, Doré J, Marceau P and Teasdale N; Body weight is a strong predictor of postural stability. Gait & posture, (2007), 26(1), 32-38. **Innocenti, L.** Correlation between obesity and balance (Master's thesis, Universidade de Tras-os-Montes e Alto Douro (Portugal)). (2018).

Intan K, Dewi M, Ayu I, Widiastuti E. Hubungan antara Indeks Massa Tubuh dengan Kekuatan Otot pada Mahasiswa Fakultas Kedokteran Universitas Mataram. J Kedokt Unram. 2020;9(1):63–72.

Khasnutdinova SL and Grjibovski AM. Prevalence of stunting, underweight, overweight and obesity in adolescents in Velsk district, north-west Russia: A cross-sectional study using both international and Russian growth references. Public Health 2010; 124(7), pp.392–397.

Lafage V, Schwab F, Skalli W, Hawkinson N, Gagey PM, Ondra S and Farcy J P. Standing Balance and Sagittal Plane Spinal Deformity. Spine 2008; 33(14), pp. 1572–1578.pin

Levine D and Whittle M W. The effects of pelvic movement on lumbar lordosis in the standing position. Journal of Orthopaedic & Sports Physical Therapy 1996; 24(3), 130-135.

Lob-Corzilius T. Overweight and obesity in childhood--a special challenge for public health. International journal of hygiene and environmental health. 2007; 210(5), 585–589. https://doi.org/10.1016/j.ijheh.2007.07.019

Manor B, Costa M D, Hu K Newton E, Starobinets O, Kang H G, Peng C K, Novak V, Lipsitz L A. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. 2010; (Bethesda, Md.: 1985), 109(6), 1786–1791. <u>https://doi.org/10.1152/japplphysiol.00390.2010</u>

Melzer I and Oddsson L I. Altered characteristics of balance control in obese older adults. Obesity research & clinical practice. 2016;10(2), 151-158.

Menegoni F, Capodaglio P, Vismara L, Cimolin V, Grugni G & Galli M Characterisation of balance capacity in Prader–Willi patients. Research in Developmental Disabilities. 2011;32(1), 81-86.

Menegoni F Galli M Tacchini, E Vismara L Cavigioli M and Capodaglio P. Gender-specific effect of obesity on balance. Obesity .2009; 17(10), 1951-1956.

National Center for health Statistics . CDC Growth Charts: United States. 2014; [WWWdocument].URL http://www.cdc.gov/growthcharts/clinical_charts. htm.

Onyemaechi, N O,Anyanwu G E Obikili E N, Onwuasoigwe O andNwankwo OE. Impact of overweight and obesity on the musculoskeletal system using lumbosacral angles. Patient preference and adherence. 2016; 291-296.

Pagnotti GM, Haider A, Yang A, Cottell K E, Tuppo C M, Tong K Y and Chan M. Postural stability in obese preoperative bariatric patients using static and dynamic evaluation. Obesity facts.2020; 13(5), 499-513.

Paschalis V, Nikolaidis M, Theodorou A A, Deli C K ,Raso V, Jamurtas A Z and Koutedakis . The effects of eccentric exercise on muscle function and proprioception of individuals being overweight and underweight. The Journal of Strength & Conditioning Research. 2013; 27(9), 2542-2551. (2013)

Pineda R C, Krampe R T, Vanlandewijck Y and Van Biesen D. Reliability of center of pressure excursion as a measure of postural control in bipedal stance of individuals with intellectual disability. 2020;15(10), e0240702. https://doi.org/10.1371/journal.pone.0240702 Pollock A S, Durward B R, Rowe P and Paul, J. P. What is balance?. *Clinical rehabilitation*. 2000; *14*(4), 402–406. <u>https://doi.org/10.1191/0269215500cr342oa</u>

Rezaeipour M. Evaluation of postural stability in overweight and obese middle-aged men. Turkish journal of medical sciences 2018; 48(5), 1053-1057.

Riach C L and Starkes J L Velocity of center of pressure excursions as an indicator of postural control systems in children. Gait & Posture.1994; 2(3), 167-172.

Rusek W, Adamczyk M, Baran J, Leszczak J, Inglot G, Baran R and Pop T. Is There a Link between Balance and Body Mass Composition in Children and Adolescents? International journal of environmental research and public health.2021; 18(19), 10449.

Samson M and Crowe A. Intra-subject inconsistencies in quantitative assessments of body sway. Gait & Posture1996; 4(3), 252–257. <u>https://doi.org/10.1016/0966-6362(95)01050-5</u>

Shumway-Cook A and Woollacott MH; Motor Control: Translating Research Into Clinical Practice. [online] GoogleBooks.2007; LippincottWilliams&Wilkins.Availablehttps://www.google.com.eg/books/edition/Motor control

Sibella F, Galli M and Crivellini M. Overweight and obesity in posture: a biomechanical evaluation of postural stability.2003; Retrieved July 15, 2024, from https://isbweb.org/images/conf/2003/shortAbstracts/SIBELLA_286-307_RE_E.pdf.

Simoneau M and Teasdale N. Balance control impairment in obese individuals is caused by larger balance motor commands variability. Gait & posture.2015; 41(1), 203-208.

Şimşek T T and Şimşek İ E. 2020; Chapter 26 - Balance and postural control. [online] Science Direct. Available at: https://www.sciencedirect.com

Singh D, Park W, Levy M S and Jung, E S The effects of obesity and standing time on postural sway during prolonged quiet standing. Ergonomics.2009; 52(8), 977-986.

Son, S. M. Influence of obesity on postural stability in young adults. Osong public health and research perspectives, 7(6), 378-381. (2016)

Steinberg , Icenogle G, Shulma E P, Breiner K, Chein ., Bacchini D, Chang L, Chaudhary N, Giunta L D, Dodge K A, Fanti K A, Lansford J E, Malone P, Oburu P, Pastorelli C, Skinner A T, Sorbring, E, Tapanya, S, Tirado. M U, Alampay L P, Takash H M S. Around the world, adolescence is a time of heightened sensation seeking and immature self-regulation. Developmental science .2008;21(2), 10.1111/desc.12532. https://doi.org/10.1111/desc.12532

Taube W, Schubert M, Gruber M, Beck S, Faist M and Gollhofer A. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. Journal of Applied Physiology.2006; 101(2), pp.420–429.

Teasdale N, Hue O, Marcotte J, Berrigan F, Simoneau M, Doré J, Marceau P, Marceau S, Tremblay A.Reducing weight increases postural stability in obese and morbid obese men. Int J Obesity .2007;31(1): 153-160.

Tharani G, and Kamatchi K. Correlation between body weight and postural control in healthy individuals using sway meter. Obesity and metabolism.2019; 16(2), 36-41.

Wearing J R, Nikki N, Christie B, Ann M D and Carolina K A. "iPhone app adherence to expertrecommended guidelines for pediatric obesity prevention." Childhood Obesity.2014; 10, no. 2 (2014): 132-144. (

World Health Organization . Obesity and Overweight. [online] World Health Organization.1995; Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

APPENDIX I Modified CONSORT checklist

Section	Checklist item
Abstract	A Structured summary of trial design, methods, results, and conclusions
Introduction	B Scientific background
	C Objectives and/or hypotheses
Methods	D The intervention for each group, with sufficient detail
	E How and when the primary and secondary measures are evaluated
	F Statistical methods used to compare groups for primary and secondary outcomes
Results	G For each primary and secondary outcome, results for each group, and the estimated size of the effect and its precision
Discussion	H Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses
Other information	I Sources of funding and other support
	J Where the full trial protocol can be accessed

	Table (1): Analysis of the reviewed articles			
	Author	Aim of the Study:	Method	Result
1.	Melzer and	To assess the effect	COP displacements along the	Obese group subjects demonstrated
	Oddsson	of obesity on	AP and ML directions in eyes	significantly greater transition
	(2016)	balance control	open and eyes closed	displacement, transition time
		mechanisms in older	conditions were used to	interval, and short-term scaling
		adults.	characterize postural control in	exponent in the ML-direction
			22 obese (30—<35 kg/m2), 26	compared with the normal weight
			overweight (25—<30 kg/m2),	group (eyes open and closed). In the
			and 18 normal weight subjects	AP-direction the obese group showed
			(18.5—<25 kg/m2).	greater transition displacement (eyes
				open) and short-term scaling
				Average AB COB and ML COB renges
				of COP sway were higher in the obese
				group compared with the normal
				weight group (eves open and closed)
2.	Błaszczyk.,	To determine the	The COP motion during quiet	A substantial reduction of postural
	et al (2009)	impact of	stance and a range of forward	sway was observed in all patients
		excessive body	voluntary COP displacements	which had increased body weight.
		weight on postural	were studied in 100 obese, and	Main postural sway parameters i.e.,
		control	33 lean women. Characteristics	the total path length as well as its
			of postural sway were acquired	directional components were
			while the subjects were	negatively correlated with the body
			standing quiet on a force plate	mass and body mass index (BMI).
			with eyes open (EO) and with	The range of a whole body voluntary
			eyes closed (EC). Their	significant change in patients with an
			anterior range of COP	obesity grade of I and II Such a
			voluntary displacements was	deficit was, however, found in
			maximal whole-body leanings	subjects with a body mass
			which were directed forward.	index above 40.
3.	Sibella., et	To examine of	A total number of 26 women	Results show a strong correlation
	al (2024)	postural stability in	(mean age 32.5) divided into 4	between pathological BMI values and
		obese subjects in	subgroups in relation to BMI	increasing imbalance during quiet
		comparison to	value (BMI: Body Mass Index	standing in both AP direction and ML
		normal subjects	defined as weight [kg] /	direction, confirming that normal BMI
		using a	height ² [m ²]): i) underweight,	range gives the highest stability to the
		biomechanical	mean BMI 19.81; ii) normal	subject.
		approach.	weight, mean BMI 22.33; iii)	
			overweight, 26.21 and 1v)	
			obese mean BMI 38.94 were	
			assessed using an	
			measurement system for: 1)	
			Total excursion index during	
			open eye condition minimum	
			of the COP trajectory vs. time	

			(Etot max (COP)-min (COP));	
			it is calculated for both AP and	
			ML direction; 2) Mean	
			excursion velocity (vm) were	
			assessed	
4.	Son, (2016)	To determine	COG velocity and total sway	On firm and foam floors with eyes closed,
		whether obesity is	distance with eyes open or eyes	COG velocity and total sway distance
		associated with less	closed on firm or foam floors	were significantly greater in the obese
		postural stability in	were determined in 12 obese	group than in the normal-weight group.
		young adults, and	individuals and 12 individuals	However, on firm and foam floors with
		whether it is	with normal weight.	eyes open, center of gravity velocity and
		influenced by		total sway distance were not significantly
		anterior pelvic tilt		different in the two groups.
		angle and sensory		
		dysfunction.		
5.	Cruz-	To assess the	90 women and 90 men, aged	During recordings on hard surface,
	Gómez .,et	influence of BMI	12 to 67 years old, MI (lean,	closing the eyes produced a larger
	al (2011)	group	overweight and obese). The	increase of sway on obese subjects than
		(lean/overweight/ob	COP during quiet upright	on lean and overweight subjects, with a
		ese) and gender on	stance was recorded using a	larger increase on the length and the area
		the postural sway of	force platform, during 4	of sway. Although gender differences
		adults and	conditions (eyes open/closed	were found during the four sensory
		adolescents during	on hard/soft surface).	conditions, no interaction was observed
	~	quiet upright stance.	~ .	between the BMI group and the gender.
6.	Cieślińska-	To determine the	Compared spontaneous	The results indicate that young obese
	Swider, and	impact of body	oscillations of the COP	women in the habitual standing position
	Błaszczyk,	weight on quiet	between 32 obese (BMI: $36.4 \pm$	are characterized by the destabilizing
	(2019).	standing postural	5.2 kg/m^2 , and 20 horman-	only in the absence of a visual control
		in young women	women and assessed the	This effect is dominated by the stabilizing
		in young women	influence of obesity treatment	mass effect in the frontal plane which
			and body weight reduction on	affects overall postural stability when
			nostural sway Trajectories of	standing The reduction of body mass
			the COP were assessed while	enables a decrease in ML static stability
			the subjects were standing	likely due to natural changes in the base
			quietly with eves open (EO)	of support while standing
			and closed (EC). Both in the	······
			sagittal (AP) and frontal (ML)	
			planes the sway range, average	
			velocity, and maximal velocity	
1			of COP were calculated.	
			Moreover, the total average	
			and maximal velocities were	
			computed.	
7.	Singh., et al	To examine the	Ten extremely obese (BMI 4	The results suggest that obesity may
	(2009)	effects of obesity	40 kg/m2) and 10 non-obese	impair postural control and may be a risk
		level, standing time	(18.5 kg/m2 5 BMI 5 24.9	factor of balance loss and falls, especially
		and their interaction	kg/m2) participants performed	during prolonged physical work
1		on postural sway	quiet upright standing on a	activities. The research findings are

		during a prolonged	force plate for over 18 min.	relevant to identifying and reducing risks
		quiet upright	Eleven postural sway measures	of balance loss and falls in various work
		standing task.	were computed for each 1-min	place settings for a wide variety of
			time interval based on the	workers.
			center-of-pressure data from	
			the force plate.	
8.	Hue., et al	To determine the	59 male subjects with BMI	A decrease in balance stability is strongly
	(2007)	contribution of body	ranging from 17.4 to 63.8	correlated to an increase in body weight.
		weight to predict	kg/m2 was assessed using a	This suggests that body weight may be an
		balance stability	force platform. The subjects	important risk factor for falling. Future
			were tested with and without	studies should examine more closely the
			vision. A stepwise multiple	combined effect of aging and obesity on
			regression analysis was used to	have and injuries and the impact of
			affect of body weight age	of doily living
			body beight and foot length on	of daily living
			balance stability (i.e. mean	
			speed of the center of foot	
			pressure) With vision the	
			stepwise multiple regression	
			revealed that body weight	
			accounted for 52% of the	
			variance of balance stability.	
			The final model explained 63%	
			of the variance.	
9.	Emara and	To study the	Control group: consisted of 15	A significant difference between studied
	Amira,	computerized	adult persons with normal body	groups among the different scores
	(2020)	dynamic	weight with their BMI between	recorded from sensory organization test
		posturography	18.5 and 24.99 kg/m ² ; Study	and rhythmic weight shift test, which
		(CDP) static and	group: was classified	means the presence of an effect of
		dynamic tests	according to body mass index	increased body mass index on the
		among healthy	(BMI) into three subgroups:	different sensory systems required to
		adults according to	Subgroup (1) (underweight):	maintain balance control and the motor
		their BMI	consisted of 15 subjects with	strategy used to maintain balance. In
		(underweight/	their BMI < 18.5 kg/m ⁻ ;	obese elderly subjects, there was
		normal weight/	consisted of 15 subjects with	maintaining balance With increasing
		overweight/obese)	their BMI between 25 and	BMI there was decrease in visual
		overweight obese).	29.99 kg/m^2 ; Subgroup (3)	dependence in maintaining balance
			(obese): consisted of 15	dependence in maintaining balance.
			subjects with their $BMI > 30$	
			kg/m^2 . The study included	
			adult persons with normal	
			hearing aged 18–60.	
10.	Teasdale et	To investigate the	Control (n = 16) BMI < 25 kg;	Obese groups significantly reduced COP
	al. 2007	effect of weight loss	Obese (n = 14) BMI < 39.9 and	speed with increasing weight loss
		on balance control	Morbid Obese (n = 14) >40 kg	
		in obese and morbid		
		obese men.		

			-Assessment for Mean COP	
			displacement speed, and RMS	
			in A/P and M/L directions	
			- Quiet stance eyes open/eyes	
11	D :		closed (14 trials of 35 sec)	
11.	Rezaelpour,	To evaluate the	A total number of 111 men	In the AP direction under EO and EC
	(2018).	postural stability in	categorized according to body	conditions, obese men swayed
		a natural stance in	mass index (BMI) into normal	significantly quicker than men with
		overweight and	weight, overweight, and obese	normal weight. In the ML direction under
		obese men	categories underwent a	EO and EC conditions, a higher velocity
			with avec open (EQ) and with	of COP was seen in normal weight men
			with eyes open (EO) and with	than in obese men.
			eyes closed (EC). Postural	
			stability was assessed using a	
			COP velocity was assessed in	
			the two directions	
12	Handrigan	To investigate the	Force (isometric know	Result suggests in overweight
12.	et al. 2010	Weight loss and	extension) and balance control	individuals weight loss is more efficient
	et ul. 2010	muscular strength	(center of pressure speed and	at improving balance control than
		affect static	range) were studied in three	increasing or even maintaining muscle
		balance control	groups: normal weight (BMI	strength. In these individuals, training
			o25 kg m2), obese (30 kg m2	programs aimed at improving balance
			BMI 40 kg m2) and excess	control should primarily target weight
			obese (BMI 440 kg m2)	loss
			Caucasian male individuals.	
13.	Riach and	To investigate the	Children (n = 81) aged 4-13	The results show a distinct age-related
	Starkes	velocity of center of	years and adults $(n = 26)$ stood	change in postural velocity in both feet
	(1994).	pressure excursions	quietly on a force plate to	together and feet heel-to-toe stances
		as an indicator of	determine velocity of center of	(eyes open and eyes closed). The authors
		postural control	pressure of ground reaction	suggest a development from
		systems in children	forces.	predominantly fast open-loop control (4-
				7 years) to closed-loop control at 8 years.
14.	Bonnet et	To examine the	Investigating the mediolateral	The result was important because this
	al., (2014)	contribution of body	control of upright stance in 16	mechanism is known to be secondary,
		weight distribution	healthy, young adults. The	weaker than the body weight distribution
		and center of	model analyzed the body	mechanism to control mediolateral
		pressure location in	weight distribution and center	stance. In practical terms, these findings
		the control of	of pressure location	may explain why the mediolateral
		mediolateral stance	mechanisms under three	variability of center of pressure
			stances width conditions (feet	displacement was significantly higher in
			close, under standard	narrow stance but not lower in wide
			condition, and apart). Our first	stance.
			mathedological requirements	
			to investigate the contribution	
			of both mechanisms by means	
			of both mechanisms by means	

15. Simoneau	To study balance	To simulate body sway of	Overall, this study revealed that faster
and	control impairment	normal weight, obese and	COP speed observed in obese individuals
Teasdale	in obese individuals	morbid obese individuals,	is related to larger balance motor
(2015)	is caused by larger	three different body model	commands variability. As a result, to
	balance motor	parameter sets were calculated	improve balance control in this
	commands	according to participant's	population, it is suggested that the benefit
	variability	characteristics (weight: 71.1	of a balance control improvement
		7.9 kg, 101.5 14 kg and 153.3	training program aiming at increasing
		23.7 kg; height: 177 5.6 cm,	ankle muscles strength would have
		175 6.8 cm and 174 6.1 cm;	limited influence in the absence of weight
		age: 38.6 9.4 years, 37.9 7.7	loss. Following weight loss, the
		years and 44.4 8.9 years, for	gravitational torque decreases. Therefore,
		control ($n = 16$), obese ($n = 14$)	the corrective torque amplitude is
		and morbid obese $(n = 14)$	reduced as well leading to less variability
		groups respectively). These	in the balance motor commands. Future
		data were taken from a	work needs to determine if obese
		previously published	individuals, in weight bearing position,
		manuscript investigating the	have higher plantar sole mechanoreceptor
		effect of weight loss on balance	threshold. This would allow assessing the
		control in obese and morbidly	contribution of sensory and motor
		obese Caucasian men.	variability to explain their larger COP
		former matter with foot	speed compared to lean individuals.
		together for 25 a (14 trials)	
		Although participants	
		performed 7 trials with their	
		eves closed (at 5 s a computer	
		generated tone indicated to	
		close their eves: only the last	
		30 s served for computing the	
		COP displacement), only the	
		data with eves open are	
		considered in the modeling	
		approach.	
16. Geldhof et	To study the static	Twenty children participated in	The ICCs for inter-item reliability of the
al., (2006)	and dynamic	the reproducibility study (mean	four sensory conditions of the mCTSIB
	standing balance:	age 10.1±0.7) including test	showed fair to excellent reliability (ICCs
	test-retest reliability	and retest measurement with a	between 0.62 and 0.80). The
	and reference values	one-week interval. The	reproducibility between test and retest
	in 9 to 10 year old	modified clinical test of	was non-significant for the condition
	children	sensory interaction on balance	'firm surface with eyes closed' (ICC of
		(mCTSIB) quantified	0.37), fair to good for the three other
		children's static standing	sensory conditions (ICCs between
		balance. The test for the limits	0.59and 0.68), and excellent for the
		of stability (LOS) measured	composite sway velocity (ICC of 0.77).
		dynamic standing balance. The	For all LOS parameters, the significant
		study sample to determine	ICCs showed fair to good reproducibility
		reference values consisted of	(ICCs between 0.44 and 0.62), with the
			exception of the non-significant ICC for

		99 children (mean age	the composite reaction time. The ICCs
		9.8±0.5).	for the separate LOS parameters showed
			fair to good and excellent reliability for
			nine parameters (ICCs between 0.46 and
			0.81) while 11 separate LOS scores did
			not demonstrate significant ICCs girls
			performed better on all the composite
			balance parameters compared to boys
			with the exception of reaction time and
			movement velocity. No differences were
			found on standing balance scores
			hotman 0 and 10 man alda
17			between 9 and 10 year olds.
17. Hasan et al.,	The goal of this	This paper describes a method	This study shows the effect that losses of
(1990)	paper to study Effect	for adjusting biomechanics	balance have on biomechanics platform
	Of Loss of Balance	platform measures of sway for	measures of sway. We suggest that loss
	on Biomechanics	loss of balance. Area and	of balance data should be separated from
	Platform Measures	velocity measures of sway	stance data obtained from tasks, such as
	of Sway: Influence	were determined in forty-seven	single balance is high. Such adjustments
	Of	elderly women, in double and	will render sway measures better suited
	Stance And a	single leg stance, first with	for examining the changes in postural
	Method for	their eyes open, then closed.	control that are associated with advanced
	Adjustment	Subjects were rarely able to	Age
		complete IO s trials during	
		single leg stances. Therefore, a	
		method was developed for	
		eliminating data associated	
		with loss of balance.	
		Monitoring changes in vertical	
		force and velocity by	
		computer, those points	
		exceeding trial specific	
		thresholds associated with loss	
		of balance were truncated.	
18. Innocenti,	To study	Forty-four participants, which	This preliminary study shows that static
(2018)	correlations	were 23 obese (group OB) and	balance capacity have significate
	between static	21 normal-weights (group	differences between a normal-weight and
	balance and body	CONT). The mean \pm SD age,	an obese population. This study suggests
	mass composition,	height and body mass of	investigating in general populations such
		subject were between the	as elderly and adolescents/children in
		normal-weight group and the	both sexes.
		obese group, respectively: 37.5	
		\pm 15.9 and 45.2 \pm 13.2 years,	
		21.2 ± 1.6 and 38.1 ± 4.4 BMI,	
		24.5 ± 5.2 and 46.7 ± 5.0 % Fat-	
		mass. Open eye single standing	
		test was assessed	
19. Tharani and	To analyze the	This is an observational study	On comparing mean values of groups, A,
Kamatchi	correlation between	done with 75 participants. Both	B and C there was a positive association
(2019)	body weight and	male and female healthy	and strong correlation between body

	postural control in healthy individuals using sway meter	individuals between 18-23 years were included in this study. Individuals with any musculoskeletal injuries, neurological conditions, peripheral artery disease and pregnant women were excluded from the study. BMI of each participant was calculated and assigned into three groups. Group A-lean, group B-normal and group C- obese. Postural control was analyzed for each group by using sway meter; level of postural sway was compared between groups A, B & C	mass index and postural control with eye open and eye closed in anterior, posterior and postural sway towards left between the groups at ($P \le 0.05$). However, there was a negative association and weak correlation between BMI and postural control with eye open & eye closed in postural sway towards right between the groups at ($P \ge 0.05$).
20. Paschalis et al., (2013).	To study the effects of eccentric exercise on muscle function and proprioception of individuals being overweight and underweight	Twelve lean, 12 overweight, and 8 underweight female participants performed an eccentric exercise session using the knee extensor muscles of the dominant leg. Muscle damage indices and proprioception were assessed up to 3 days post exercise	The results indicated that proprioception at baseline of the lean individuals was superior to that of the other 2 groups. The overweight individuals exhibited a smaller knee joint reaction angle to release than did the lean group, whereas the underweight individuals exhibited a larger reaction angle to release than did the lean group. After eccentric exercise, proprioception was affected more in the overweight and the underweight groups than in the lean group. The greater exercise-induced muscle damage appeared in the overweight group, and the deficient muscle mass of the underweight participants could explain in part the greater disturbances that appeared in proprioception in these 2 groups than for the lean counterparts.
21. Handayani et al., 2022	To study the relationship between body mass index and postural balance among student of the martial arts club malikussaleh university	The sample of this study used total sampling with 49 respondents. Data collection was carried out by measuring body weight, height, static balance with a standing stork test and dynamic balance with a modified bass test of dynamic balance. The results of this study obtained BMI with the highest proportion is normal category, with 31 people (63.3%), while the static	This study concludes that there is a relationship between BMI and postural balance among students of Martial Arts Club Malikussaleh University.

		balance commonly found in the	
		very good category with 11	
		people (22.4%), and dynamic	
		balance commonly found in the	
		balanced category with 29	
		people (59.2 %)	
22. Pagnotti et	To study postural	Traditional force plate	Mean body weight was 85% (p < 0.001)
al., 2020	stability in obese	measurements and	greater in obese than nonobese subjects.
	preoperative	stabilograms are gold	Following static balance assessments, we
	bariatric patients	standards employed when	observed greater sway displacement in
	using static and	measuring center of pressure	the AP direction in obese subjects with
	dynamic evaluation	(COP) and postural sway To	eves open (87% $p < 0.002$) and eves
	ay nume e valaaton	quantify the extent of postural	closed (76% $p = 0.04$) versus nonobese
		instability in subjects with	subjects. Obese subjects also exhibited a
		abasity bafara bariatria	higher COP velocity in static tests when
		obesity before barratic	inglier COF verocity in static tests when subjects' even were even $(470/\pi = 0.04)$
		surgery, we assessed 17 obese	Subjects eyes were open $(4776, p = 0.04)$.
		subjects with an average BMI	Dynamic tests demonstrated no
		of 40 kg/m2 in contrast to 13	differences between groups in sway
		nonobese subjects with an	displacement in either direction;
		average BMI of 30 kg/m2.	however, COP velocity in the ML
		COP and postural sway were	direction was reduced (31%, $p < 0.02$) in
		measured from static and	obese subjects while voluntarily swaying
		dynamic tasks. Involuntary	in the AP direction, but increased in the
		movements were measured	same cohort when swaying in the ML
		when patients performed static	direction (40%, p < 0.04)
		stances, with eyes either	
		opened or closed. Two	
		additional voluntary	
		movements were measured	
		when subjects performed	
		dynamic, upper torso tasks	
		with eyes opened	
23. Capodaglio	To Investigate	Platform stabilometry consists	the result concluded that high
et al.,	balance control and	of the measurement of forces	mechanical request in obese subjects due
2012).	balance recovery in	exerted against a platform	to a whole body center of mass further
	obesity	during quiet stance. The force	away from the axis of rotation causing a
		platform quantifies the body	greater gravitational torque the obese
		sways of an individual in a	individuals present larger excursions of
		standing position. It is widely	COP, which are characterized by the
		used in clinical settings to	same velocity of oscillation if compared
		obtain functional markers on	non obese
		fine competencies and their	
		development and a large	
		number of posturographic	
		measures are sensitive to	
		testing condition (ie eves open	
		vs eves closed feet position	
		and presence of external	
		and presence of external	
1		sumun). Static posturography	

	is user-friendly and typically in	
	everyday practice focuses on	
	the properties of the COP	
	trajectory using time series	
	(length, surface, maximal	
	amplitude of the displacement,	
	speed, and frequency analysis).	