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Compressed sensing (CS) represents an efficient framework to simultaneously acquire and compress 

images/signals while reducing acquisition time and memory requirements to process or transmit them. 

Specifically, CS is able to recover an image from random measurements. Recently, deep neural networks 

(DNNs) are exploited not only to acquire and compress but also for recovering signals/images from a highly 

incomplete set of measurements. Super-resolution (SR) algorithms attempt to generate a single high resolution 

(HR) image from one or more low resolution (LR) images of the same scene. Despite the success of the existing 

SR networks to recover HR images with better visual quality, there are still some challenges that need to be 

addressed. This paper designs a deep neural network that generates HR images from LR Xray COVID-19 

images. To address this problem, we propose a novel robust deep CS framework that is able to mitigate the 

geometric transformation and recover HR images. Specifically, the proposed framework is able to perform two 

tasks. First, it is able to compress the transformed image with the help of an optimized generated measurement 

matrix. Second, the proposed framework is able not only to recover the original image from the compressed 

version but also to mitigate the transformation effects. The simulation results reported in this article show that 

the proposed framework is able to achieve a high level of robustness against different geometric 

transformations in terms of peak signal-to- noise ratio (PSNR) and similar structure index measurements 

(SSIM). 
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1. Introduction 

During last 2 years, the world faces another pandemic which is novel coronavirus, namely SARS-CoV-2. It is 

discovered for the first time in in Wuhan, China, around December 2019. After that by short time, he 

coronavirus became known as COVID- 19 and had spread across nearby countries within a short period, and 

soon after, around March 2020. The World Health Organization (WHO) declared a global pandemic [1]..Due 

to high virus infection, it is essential to control the disease, including rapid diagnosis and timely quarantine. 

Coronaviruses are a broad family of four types of viruses, including alpha- coronavirus, beta-coronavirus, 

coronavirus delta and gamma- coronavirus [1]. Up to now, seven out of 40 different species have been found 

capable of spread to humans in the Coronavirus family resulting in diseases such as common cold [1]. Past 

experiments have shown that both SARS and MERS viruses are passed on to humans from cats and camels. 

COVID- 19 is believed to have been transmitted to humans from bats and anteaters [1]. 

 

According to the latest guidelines published by the World Health Organization (WHO), reverse transcription-

polymerase chain reaction (RT-PCR) or gene sequence for respiratory or blood samples must validate the 

diagnosis of coronavirus as the main indicator for hospitalization [2]. But it takes a long time for the relevant 

kits to detect a virus, in addition to the high time required for diagnosis, they are also less sensitive to the 

detection of the virus [2]. In addition, previous studies have shown that most doctors and nurses have been 

infected with the COVID-19 during salvia sampling based on RT-PCR kits [2]. These kits are also limited in 

the world and require transport costs. According to the content, the diagnosis based on these RT-PCR kits 

exposes doctors and nurses to the COVID-19 virus and is ultimately not cost-effective. Therefore, rapid 

diagnosis of COVID-19 is necessary to treat and control the disease [2]. 

The chest scan is another method used during the treatment of this disease [10]. Computerized tomography 

(CT) and Digital Radiography (or standard 2D X-ray) scans are among the methods of chest imaging. DR is 

used to scan the body for the diagnosis of fractures, lung infections, pneumonia and tumors. CT is an advanced 

DR that provides clearer images of organs, bones, and tissue. However, CT scans are not available in all medical 

centers and are not as affordable as DR. For this reason, today physicians usually use DR in the first step of 



Delta University Scientific Journal Vol.06 - Iss.02 (2023) 260-276 

 

Page | 261 

diagnosis. Using X-ray is a faster, easier, more affordable and more harmful method than CT [2]. After taking 

chest X-ray images, the doctor should visually diagnose bacterial, viral, COVID-19 and etc. infections. Due to 

exhaustion and the need for expert personnel, visual examination-based diagnosis is unpleasant, time-

consuming and incorrect often results in low diagnosis accuracy. Also, the image consistency of chest X-ray 

has certain flaws, such as low contrast, over- lapping organs and blurred boundary, which has a significant 

impact on the identification of chest X-ray pneumonia [2]. Based on the above-mentioned facts, automatic 

detection of the virus type (including COVID-19) based on chest images has gained a lot of attention in recent 

researches. Automatic detection of COVID-19 not only causes a fast diagnosis but also reduces the workload 

of doctors and is useful for timely treatment and patient mortality reduction. 

Recently, various computational methods based on deep learning have been developed for the observation and 

analysis of the automatic detection of COVID-19 used X-Ray images. Consequently, this paper proposes a 

novel robust deep CS framework that is able to mitigate the geometric transformation and recover HR images. 

Specifically, the proposed framework is able to perform two tasks. First, it is able to compress the transformed 

image with the help of an optimized generated measurement matrix. Second, the proposed framework is able 

not only to recover the original image from the compressed version but also to mitigate the transformation 

effects. 

The traditional image acquisition system typically follows the Nyquist-Shannon sampling theorem that yields 

acquiring an intensive number of samples. The Nyquist-Shannon sampling theorem states that the sampling 

frequency should be equal or greater than twice the bandwidth of the signal. So, for efficient storage and/or 

transmission, compression of the signal is needed to remove redundancy by a computationally complex 

compression method. The data acquisition devices, in some applications, are required to be simple. 

Additionally, the over-sampling can damage the captured object as in medical imaging. Consequently, these 

kinds of image acquisition systems maybe not suitable for such kind of applications. 

The developing technology of compressed sensing (CS) presents a new technique not only for image 

acquisition but also for image reconstruction that can simultaneously perform the sampling and compression 

processes. Specifically, ac- cording to [3, 4], CS is able to recover the signal from much fewer measurements 

when the signal is sparse in some do- main compared with the number of measurements required by Nyquist-

Shannon sampling theorem. It is well known that the images can be sparsely represented as images have much 

amount of redundant information. In this way, according to CS theory, the images can be compressed and 

reconstructed efficiently. To this end, there are basic challenges that need to be solved including the design of 

the sampling matrix and the development of the reconstruction method. 

Single image super-resolution (SISR) can be considered as one of the most famous computer vision problems 

that recently attracts researchers attention. SISR is an image processing task that aims to generate a high-

resolution (HR) image from its low-resolution (LR) version of images. The difficulty of achieving SISR lies in 

computing the HR image from its LR version as it is a many-to-one mapping problem. How- ever, numerous 

image super-resolution (SR) methods have been reported to deal with this non-trivial problem [5,6]. Over the 

last decade, a various traditional non deep-learning (DL) based approaches have been utilized in SISR computer 

vision task, including prediction-based methods [7–9], edge- based methods [10, 11], statistical methods [12, 

13], patch- based methods [14, 15], missing data reconstruction in re- mote sensing image [16–18],and sparse 

representation methods [12, 19]. 

Recently, with the massive progress achieved in the DL approaches, DL-based SR models are widely proposed 

and often achieve better performance compared to various traditional super-resolution methods. Specifically, 

convolutional neural network (CNN) methods have achieved superior performance in SISR tasks. 

Consequently, CNN has been presented to leverage SISR tasks [6, 20–37]. The correlation be- tween the LR 

and HR images can be easily learned by DL- based techniques and better performance compared to 

conventional methods can be achieved. Additionally, these techniques are able to generate a high resolved 

image. However, there are still several challenges and limitations of the existing algorithms [38–41]. 

 

2. Material and methods 

 

2. Challenges And State-Of-The-Art 

In practical scenarios, our proposed framework is able to overcome the following challenges: 

2.1 Measurement Matrix Design 

The restricted isometry property (RIP) must be satisfied in the measurement matrix design in order to guarantee 

the performance of CS [3, 4]. Therefore, the design of the measurement matrix is crucial for spike recovery. In 

the last few years, various methods have been developed to design the sampling/measurement matrices. These 

methods are built based on random, binary, [42, 43], and structural matrices [44, 45]. However, these sampling 

matrices are all signal independent as well as non-optimal, due to the fact that they are unaware with the 

characteristics of the signal. In order to circumvent this issue, we propose a DL-based framework to design 

optimized sampling matrices for sensing and compressing tasks. 
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2.2 Efficient Recovery Solver    

In addition, CS recovery methods should be able to recover the original image with better visual quality from 

its com- pressed version. Recently, various sparsity-regularized-based methods have been presented (e.g. [46–

48]), the greedy algorithms (e.g. [49, 50]), and the iterative thresholding algorithms (e.g. [51]). However, these 

algorithms are not suit- able for real-time transmission due to the high computational complexity of these 

algorithms. Consequently, the challenge for developing recovery algorithms for real-time applications needs 

to be solved. In our framework, we propose to use the DL-based framework to recover the original image. 

 

2.3 Robustness Against Geometric Transformation 

The images can be affected by one or many geometric trans- formations in many real-life applications such as 

translation, rotation, and scaling, etc. To establish a better relationship between the input and target output 

images, the spatial trans- formations can be utilized [52] including perspective or affine transformations to 

overcome the geometric transformations in all applications. Thus, the design of accurate and robust DL 

networks must be invariant to input spatial transformations. Despite the good performance achieved by the 

existing SR networks to generate the HR images, it can not alleviate the effect of the geometric transformations. 

This is mainly due to the limited receptive field of CNNs which makes these net- work unable to be spatially 

invariant to the position of features [53]. 

The spatial transformer network (STN) [52] has been presented to achieve the spatial invariance. The STN is 

characterized by the capability to be merged into existing CNN to provide the ability of mitigating the 

geometric transformation effect. Additionally, the STN network can provide a dynamic mechanism for 

performing a suitable transformation for each input sample [54, 55]. The spatial invariance of the SR net- work 

may not be typically non-adequately expanded by inserting the STN into the existing SR image networks. As 

known, the bilinear interpolation in the pixel domain is utilized by STN to estimate the transformation 

parameters and re-sample the input image. Thus, its output often becomes blurred compared with its original 

input image [52]. Consequently, we propose a robust DL-based HR image recovering framework to 

simultaneously address the geometric corrections and recover HR image from its corrupted version. 

 

2.4 Contributions And Paper Organization 

In summary, our main contributions are as follows: 

• We propose a robust CS-SR based network that is able to simultaneously perform various tasks 

including; 1) compressing the input image according to the CS theory; 2) geometric transformation 

corrections;3) recovering HR images. 

• We propose to utilize the CS algorithm to compress the input LR images. Consequently, the 

processing time required to recover the HR images is reduced. 

• We compare our proposed framework with existing SR image methods in terms of the training cost 

and learning complexity. 

• The superiority of our proposed framework compared with the existing benchmarks is supported and 

verified in terms of both peak signal-to-noise-ratio (PSNR) and similar structure index measurements (SSIM) 

by extensive experiments. 

The remainder of this article is structured as follows. Section II presents a survey on SR related work besides 

the basics of CS, and spatial transformations. Our proposed robust CS network is described in Section III. 

Section IV presents experimental results and their analysis. Finally, section V presents the conclusion of this 

article. 

 

3. Related Work 

over the past decade, significant progress has been achieved in several applications for real-world image 

processing, including SISR [5], image classification [56], object detection [57, 58]. These achievements are 

related to the huge advances in CNNs [56, 59], computational power, and the availability of enormous amount 

of data [60]. This section begins by ex- plaining related work on SISR, spatial transformations, followed by a 

review of CS concepts. 

3.1 Single Image Super-resolution 

Single image super-resolution (SISR) reconstruction is to recover a corresponding high-resolution (HR) image 

from a low-resolution (LR) image. As a result, this problem can be formulated as : 

�̂�𝐻𝑅 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝐻𝑅
||𝑥𝐿𝑅 − 𝐷𝐻𝑥 𝐻𝑅

||
2
                                                           (1) 

where 𝑥𝐿𝑅 , 𝑥𝐻𝑅 are LR and HR images, respectively. The geometric transformations, and a down-sampling 

operator can be represented by degradation matrices H, and D, re- spectively. The down-sampling operator, D, 

is firstly applied to the HR images, (i.e., 𝑥𝐻𝑅 ), to generate the observed LR 

  

images (i.e., 𝑥𝐿𝑅). For this problem to be solved, an effective prior is needed to transform this problem into a 

deterministic one. In the last decades [5, 61], several solutions have been proposed to solve this ill-positioned 
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problem. Recently a large number of DL studies have been conducted to solve the question of SR image. As a 

result, the existing DL-based SR techniques related to our work are evaluated as follows. 

Super-resolution deep convolutionary networks (SRCNN) 

[5] is one of the ground-breaking research which is the first attempt to apply CNN for SISR problem. The main 

idea be- hind SRCNN is mapping the bicubic up-sampled LR space to HR space. Specifically, SRCNN utilizes 

the bicubic interpolation as a pre-processing step. Further, SRCNN uses deep convolutional layers to extract 

the features of the overlapping patches. Finally, the reconstructed HR images are generated by non-linearly 

mapping of the extracted feature vectors to each other and then aggregated in the form of patches. The SRCNN 

is characterized by its simple structure which utilizes only convolution layers. Thus, the input image with 

various sizes can be passed through the SRCNN in one path. De- spite the straightforward structure of the 

SRCNN, it still has a number of limitations. The most critical limitation is related to the slow convergence of 

the network, and the network only operates on a single scale. 

The authors of [62] have made great efforts to improve SRCNN’s performance through proposing FSRCNN. 

Specifically, the pre-processing Bicubic interpolation in SRCNN  is replaced by a deconvolution post-

processing activity [62]. Structurally, the FSRCNN performs extraction, shrinking, mapping, and expansion of 

the input by utilizing four layers of convolution. Sequentially, the FSRCNN performs the mapping step on the 

input followed by shrinking dimensions of the features. Finally, the expansion step is performed back at the 

latter point. Both SRCNN, and FSRCNN utilize the mean square errors (MSE) functions as the loss functions 

in network training. 

Recently, the researchers tried to answer a crucial question that has appeared due to the huge utilization of 

CNN in SISR. The question is ”Should a deeper network be implemented to optimize the SR performance?”. 

Among all the answers, the authors in [21] have presented an answer to this question by designing a very deep 

super-resolution network (VDSR). The design of VDSR is inspired by a very deep VGG-network that is used 

for ImageNet classification. Structurally, VDSR is a cascaded network and consists of 20 layers in depth. 

Furthermore, all the filters employed have a size of 3-by-3 [21]. Inspired by [56], the authors of VDSR [21] 

utilize the residual learning to train the VDSR network. Additionally, the weakness of SRCNN is addressed by 

expanding SR with a single network model to multi-scale. Despite the success of CNN based SR models, but 

these networks are not able to mitigate the effect of the geometric transformation. Motivated by that, we 

propose a deep robust network that is not only able to overcome the geometric transformation effects but also 

recover the HR image from its corrupted version. 

The author of [23], proposed deepens the network by stacking simplified residual units on the basis of global 

residual, namely EDSR. This network uses global residual learning, end-to-end image super-resolution. The 

simplified residual unit includes only two convolution layers and one ReLU activation layer 

 

3.2 Spatial Transformer 

Invariance against geometric transformations is often a desirable property to any computer-vision model, which 

is also highly demanded in many practical applications across areas of both computer vision and multimedia 

processing. Traditionally, the researchers have proposed various methods to design a model that is invariant to 

affine transformations including translations, rotations, scaling, etc. Some examples of these methods that have 

achieved a robustness level to various transformations are hand-crafted features such as HOG [63], SIFT [64] 

and SCIRD [65]. Despite that the convolutional layers are able to learn the filters in a translation-invariant 

manner, the filter response is still not invariant. Addition- ally, the Max-pooling methods provide a way to be 

invariant to affine transformations. However, this way is not suitable for large translations. This is mainly due 

to the pooling in practice is performed over a small region  (e.g., 2 2 or 3 3). Thus, spatial invariance is 

provided only up to a few pixels by each pooling. By applying filters at multiple scales and locations followed 

by max-pooling, a locally scale-invariant representations are obtained [66]. 

The spatial transformer network (STN) [52] is also closely related to our proposed work. STN is able to permit 

for significantly-larger (parameterized) transformations. STN can be inserted into CNN and provide an end-to-

end learning mechanism. In this way, STN is able to provide a way for achieving the spatial invariance for the 

model. However, STN utilizes the bilinear interpolation method to sample the input images in the pixel domain. 

Consequently, the input images are passed through the bilinear interpolation. Thus, the quality of the 

transformed image deteriorates. 

 
Fig. 1: Structural overview of the existing STN [52] 
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Fig.1 shows a structural overview of STN [52], where three modules can be identified, including: (i) a 

localization network, which takes the input and estimates the transformation parameters θ; (ii) a grid generator, 

which creates a sampling grid for reconstruction of output images; and (iii) a sampler, which computes the 

output by populating the sampling grid. 

 

3.3 Compressed sensing (CS) 

The CS theory states that the vector x can be accurately recovered from M random measurements over the 

measurement matrix [3, 4]. This can be formulated as: 

𝑦𝐶𝑆  =  𝛷𝑥                                                                  (2) 

where x is a signal with length N (i.e. x RN ). The measurement vector 𝑦𝐶𝑆 length is equal to M and M << N . 

Furthermore, there is a basis function Ψ in which x is sparse. Consequently, the signal x can be represented as 

x = Ψf . Then, the compressed vector can be expressed as: 

𝑦𝐶𝑆   =  𝛷𝛹𝑓  =  𝐴𝑓 .                                                          (3) 

The sensing matrix, A, is typically full rank and should satisfy the RIP [67]. 

The main challenge of CS is reconstructing the original signal x from the measurement vector 𝑦𝐶𝑆 according 

to (2), which is an under-determined problem. Linear inverse problems attract a lot of attention throughout 

engineering and mathematical sciences. In most applications, these problems are under-determined, so one 

must apply additional regularizing constraints in order to obtain interesting or useful solutions. Sparsity 

constraints have emerged as a fundamental type of regularization [68]. 

The CS recovery problem can be modeled as in (4). The objective is to recover f by the knowledge of 𝑦𝐶𝑆 by 

satisfying the following condition: 

𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛||𝑓||
0

, 𝑠. 𝑡  𝑦𝐶𝑆 = 𝐴𝑓                                                    (4) 

As well known, this problem is NP-hard [68, 69] and needs a combinatorial search. Thus, to solve this problem, 

substituting the l0-norm by the closest convex norm, which  is the l1 norm is proposed by Chen, Donoho, and 

Saunders in [70]. This solution can be formulated as: 

𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛||𝑓||
1

, 𝑠. 𝑡  𝑦𝐶𝑆 = 𝐴𝑓                                                    (4) 

During the last decades, various types of recovery algorithms were suggested including the convex optimization 

and greedy algorithms. The convex optimization algorithms try to convert the non-convex problem into a 

convex one and then an approximate solution is obtained [46–48,71]. Despite the success of convex 

optimization to solve the CS recovery problem, it still requires a very high computational complexity. Alter- 

natively, greedy algorithms have been proposed to reduce the computational complexity of convex 

optimization algorithms. The greedy algorithms, for example, include matching pursuit [49], orthogonal 

matching pursuit [50]. Despite the low computational complexity of the greedy algorithms compared to the 

convex optimization but the reconstruction quality is low. The authors of [72] proposed a non-local tensor 

sparse and low-rank regularization (NTSRLR) approach, which can encode essential structured sparsity of an 

HSI and explore its advantages for HSI-CSR task. In addition, the authors of [73] proposed the first effort to 

characterize the spatial and spectral knowledge using the structure-based sparsity prior. Specifically, they 

introduce the non-local low-rank matrix recovery model and the hyper-Laplacian prior to encode the spatial 

and spectral structured sparsity, respectively. 

With the huge success of DL, recently, there are numerous DL-based methods that have been proposed for 

image CS reconstruction [74–78]. The authors in [77] have presented a stacked denoising autoencoder (SDA) 

which is able to learn the statistical dependencies between the different elements of certain signals. In this way, 

the signal recovery performance is improved. One of the drawbacks of the proposed SDA is that SDA suffers 

from the high computational complexity with increasing the signal dimension. This is mainly due to its 

architecture that includes a full connection between any two successive layers. By utilizing the weight sharing 

method, the authors in [78] presented a CNN-based reconstruction method (ReconNet). This network is able 

to reduce the computational complexity. Inspired by the iterative shrinkage-thresholding, the authors in [76] 

proposed CNN (ISTA-Net) for CS reconstruction. To this end, we can conclude that the DL-based methods 

run faster than the traditional image CS methods. Motivated by that, in this article, we focus on utilizing the 

DL-based methods to compress and recover the original images. 

 

4. The Proposed Deep Feature 

The main goal of our proposed robust CS- SR network is to compress the original image and mitigate the effect 

of geo- metric transformation, simultaneously. Furthermore, our pro- posed framework is able to generate HR 

images that are similar to the original images from its compressed transformed LR images. Fig.2 shows the 

flow chart of our proposed framework. Our proposed framework is able to achieve this task through the 

mitigation of the spatial transformer effect for distorted LR images. Specifically, the proposed frame- work is 

able to perform three tasks including (1) generating an optimized measurement matrix, (2) mitigating the geo- 

metric transformation effects, and (3) recovering HR images from its compressed version. As seen in Fig.2, 

our proposed framework includes three stages starting by feeding the trans formed input to the compression 

network which utilizes CS to compress the input. Then, the output of the compression stage is passed through 
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the feature transformer network (FTN). The FTN is able to mitigate the geometric transformation effects by 

estimating the transformation parameters efficiently. Finally, the output images from the FTN are passed 

through an SR/CS recovery network. This network is able to generate HR images from its compressed LR 

version similar to the original images. To this end, an overview of our proposed framework is provided. The 

remaining part of this section includes more specific details of the compression network, the feature transform 

network, and the SR/CR recovery network. 

 
 

Fig. 2: Flow chart of our proposed framework 

4.1 Compressed Sensing Network 

The structure of our proposed framework is shown in Fig. 3. As shown in Fig.3, the first stage of the proposed 

framework is the compression network. In other words, the sampling matrix, which is used for acquiring CS 

measurements, is learned and optimized by the first stage. In the compression network, the image is first 

converted into one-dimensional vector with size (W* H *C) x1, where W , H, and C  are the width,  height, 

and channel of the image. Then, a fully connected (FC) layer with M neurons is adopted to compress the image 

vector into a lower dimension. The weights of the FC layer are considered as the CS sampling matrix Φ. During 

the training step, the sampling network with the training images learns the sampling matrix. The characteristics 

of images can be utilized by the learned sampling matrices, and hence more image structural information can 

be represented in the CS measurements. Thus, the quality of the reconstructed images is in- creased. 

Furthermore, this learned sampling matrices can be employed to generate CS measurements. Finally, the com- 

pressed image vector is converted into a 3D compressed image. 

4.2 Feature Transformer Network 

The goal of our proposed framework is to overcome the spatial transformation effects. This goal can be 

achieved through the mitigation of the transformation effects and then estimating the geometric parameters 

efficiently. To estimate the geo- metric parameters, we propose a feature transformer network (FTN) as shown 

in Fig.3. Our proposed FTN includes three main modules including localization network, grid generator, and 

sampling grid. Our proposed FTN preserves the essential spatial transformer structure and the working 

principle. How- ever, we have redesigned the localization network to improve the estimation of the geometric 

transformation parameters. In addition, our proposed FTN estimates these parameters with deep features rather 

than pixels. 

The main contribution of our proposed framework is adding the proposed FTN as shown in Fig.3. The FTN is 

considered a multi-scale deep feature mapping. In addition, to refine the features, the feature refinement unit 

(FRU) is added into the localization network inside the FTN. Further, we have redesigned our proposed 

framework to work in the feature domain rather than the pixel domain. To ex- tract the deep features from the 

input image, we propose firstly passing the images through a VGG19 network. Then, to refine the extracted 

features, they are passed through the FRU. Structurally, FRU consists of 18 layers to provide a multi-channel 

feature maps. Thus, in this way, the generated multi-channel feature maps have sufficient details for estimating 

the optimized transformation parameters in feature domain. Therefore, we ensure that our proposed framework 

performs the spatial transformations in deep features rather than pixels. 
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Fig. 3: Our proposed framework architecture: Conv(ci; ni ; ki), where the variables ki, ni , ci represent the 

number of feature maps, the number of filters and filter size, respectively. M , CR are the compressed image 

size, and the compression ratio, respectively. 

The operation of FTN as shown in Fig.3 can be illustrated in various steps. First, the input image is transformed 

into the feature domain from the pixel domain by passing through the VGG feature extraction network. 

Specifically, in our pro- posed FTN, we propose to use the VGG 19 [79] network to extract the deep features. 

By utilizing several convolution layers together with max-pooling layers, the VGG 19 is able to extract the 

features and increase the input image features into 512 instead of 3 features. These 512 features are utilized by 

FRU to estimate the transformation parameters in the feature domain. Then, by utilizing the estimated 

parameters, our pro- posed FTN interpolates the input feature domain. The operation of FTN can be formulated 

as provided below: 

𝐹(𝑥𝐶𝑆) = 𝑉𝐺𝐺19(𝑥𝐶𝑆 , 𝑠) = 𝐹𝑥𝐶𝑆,𝑠
                                                         (6) 

where the compressed distorted input can be represented by 𝑥𝑐𝑠, V GG19 represents the VGG19 network to 

extract deep features, and s stands for the scale of the deep feature maps. To generate an HR image similar to 

its ground truth and mitigate the geometric transformation effects, we design the cor- responding loss function. 

This loss function can be illustrated as: 

𝑙𝑜𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛 ||𝐷𝐹(𝐹𝑥𝐶𝑆
, 𝑠) − 𝑥𝐻𝑅||

2

2

                                                        (7) 

where xHR is the ground truth, and the output of the deep feature transformation framework can be represented 

by DF (Fxcs,s). Then, the localization network in Fig.3  can be driven by Fxcs,s, the extracted deep feature 

maps and estimating the feature transformation parameters. This step can be represented as: 

�̂�𝐹 = 𝐿(𝐹𝑥𝐶𝑆
, 𝑠)                                                                           (8) 

where �̂�𝐹 stands for the estimated transformation parameters by using deep feature maps. Then, the 

localization network details with FRU are described as follows: 

�̂�𝐹 = 𝐿𝐹𝑅𝑈(𝐹𝑥𝐶𝑆
, 𝑠) = 𝐹𝐶 (𝐶𝑜𝑛𝑣 (𝑐𝑜𝑛𝑣 (… (𝐹𝑥𝐶𝑆

, 𝑠))) + 𝐹𝑥𝐶𝑆,𝑠)                      (9) 

where Fxcs,s are the input features. To estimate the feature transformation parameters �̂�𝐹, the input features 

maps are refined by passing through convolutional layers to extract hierarchical levels of deep feature 

details. Then, the output of the last convolutional layer is added to the input according to the residual 

learning. The output of the summation step is fedinto the final fully-connected layer, i.e., classifier, to get �̂�𝐹. 

Structurally, as shown in Fig.3, FRU consists of 18 convolutional layers.  The first 3 convolutional layers are 

obtained from the pre-trained VGG layers and the other 15 layers are from ResNet [56] layers. The concept 

behind choosing some layers from VGG is ensuring a smooth transition from VGG- based deep feature 

extraction to feature refinement. 

The estimated feature transformation parameters are fed into the transformation network TF, to obtain an 

estimate for the transformed feature maps Fxcs . To ensure restoration of the desired output dimension of the 

transformed feature map, the de-convolutional layers are added. Details of the operations are described as: 

𝐹𝑥𝐶𝑆
= 𝑇𝐹(𝐹𝑥𝐶𝑆

, 𝑠 , �̂�𝐹 , 𝑠)                                                                  (10) 

where s controls the deconvolutional layers 

4.3 SR/CR Recovery Network 

The CS theory states that if the image is well sparsely represented in a specific domain then the image can be 

correctly recovered from the CS measurements. So, we propose to re- cover the image by utilizing a CR 

recovery network. Our recovery network is able to achieve two tasks: 1) recovering the original image from 

its compressed version 2) generating HR image from its recovered version. In our proposed framework, we 

apply the output of our proposed FTN module to the image super-resolution module (VDSR), acting as a CS 

recovery network and a preprocessing unit to generate an HR image. Such a combination of FTN+VDSR not 

only pro- vides a robust single image super-resolution, but also converts the multi-channel deep feature maps 

back into pixel domain ridging the gap between the deep features and applications that require their output to 

be in pixel form. 

The operation of the SR/CR recovery network can be explained as follows. First, the recovery network receives 

the output from the FTN, and the initial reconstructed image is obtained in the feature domain. Then, the VDSR 

network is used to generate HR images from its initial version. Correspondingly, our proposed deep feature 

transformation frame- work can be described via 
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�̂�𝐻𝑅 = 𝐶𝑜𝑛𝑣 (𝑐𝑜𝑛𝑣 (… (𝐹𝑥𝐶𝑆
, 𝑠)) + 𝐹𝑥𝐶𝑆,𝑠)                                               (11) 

where �̂�𝐻𝑅 represents the output transformed images in pixel domain through the feature transformation 

4.4 Loss Function 

The main goal of our proposed framework is to create a robust compressed sensing SR network that is able to: 

1) compress the original signal according to the CS theory.  specifically, it is able to generate a compressed 

vector which is an optimized representation to the original signal; 2) alleviate the effect of spatial transforms 

for corrupted LR images by introducing the FTN module; 3) recovering and generating HR images from 

compressed LR transformed images simultaneously. Consequently, our proposed framework generates the 

optimized measurement matrix that is utilized for generating the optimized compressed vector 𝑦𝐶𝑆 . In 

addition, our pro- posed framework not only minimizes the effect of the geo- metric transformation effect but 

also minimizes the difference between the estimated HR image and the HR image itself. Specific details are 

described as follows. 

𝐿(𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛 ||𝐷𝐹(𝐹𝑥𝐶𝑆
, 𝑠) − 𝑥𝐻𝑅||

2

2

                                                        (7) 

where L (θ) is a loss function (i.e., objective function), and θ represents the model parameters of the deep 

neural network. The loss function in 12 can be can be established via three operational steps. First, our 

proposed framework needs to generate the optimized measurement matrix A that is used to generate an 

optimized 𝑦𝐶𝑆 vector. second, our proposed framework needs to identify the affine transformation parameters, 

in order to capture any possible geometric transformation, through minimizing the errors between the HR and 

the distorted image. Finally, we generate an estimated HR image similar to the desired one through minimizing 

their corresponding MSEs. As a result, our loss function can be further formulated as follows: 

𝐿(𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐴
||𝑦𝐶𝑆 − 𝑦𝑂𝐶𝑆||

2

2
+ 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐹𝑇𝑁

||𝑥𝐹𝑇𝑁𝑜𝑢𝑡
− �̂�𝑇||

2

2
+ 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑆𝑅/𝐶𝑅

||𝑁(𝑥𝐶𝑆, 𝜃𝐹𝑇𝑁) − 𝑥𝐻𝑅||
2

2
         (8) 

where 𝑦𝑜𝑐𝑠 is the optimized compressed vector, �̂�𝑇 is the out- put image after performing the spatial 

transformation, �̂�𝐻𝑅  = 𝑁(𝑥𝐶𝑆, 𝜃𝐹𝑇𝑁) is the estimated HR image, θF T N is the model parameters  of  the  super-

resolution  neural  network,  and  xˆT is the output of a deep residual learning based spatial trans- form module. 

Additionally, θA, θF T N , and θSR/CR represent the compression network parameters, the estimated 

geometric/affine transformation parameters, and the SR/CR network parameters, respectively. 

Specifically, the first part of 13 minimizes the error be- tween the compressed vector and its optimized version. 

correspondingly, this part is used to obtain an optimized measurement matrix. The second part of the equation 

is to minimize the error between the transformed LR image and the desired HR image for the super-resolution 

to estimate the affine trans- formation parameters and mitigate the transformation effects. The last part of the 

equation is to minimize the error between the output of the FTN module and the HR image to obtain an image 

similar to the desired HR image. 

 

5. Evaluations and Experimental Result Analysis 

Extensive experiments have been carried out to evaluate the performance of the proposed framework. In 

addition, we re- port our experimental results as well as their analyses. Firstly, our proposed FTN is compared 

with the existing STN over the number of modeling parameters. This comparison shows that the proposed 

FTN overwhelms the existing STN in terms of computing cost and learning complexity. Secondly, to validate 

the effectiveness of our proposed framework, we have carried out a number of experiments of computer vision 

ap- plications. To show the capability of our proposed framework to solve real-world problems, we apply our 

proposed framework to one popular computer vision task, i.e. single image super-resolution (SISR). Then, the 

following simulation results show that our proposed framework is a powerful learning tool, which is able to 

simultaneously handle geometric transformations of the compressed images and resolution enhancement for 

SISR applications. 

5.1 Experiment Setup 

5.1.1 Dataset For Training and Testing 

For the training and testing of the proposed framework, we have utilized various datasets. To evaluate the 

proposed framework in solving the SISR computer vision problem, we have used images from the [80] and 

[81]. We augment the training data by rotation, scaling, and mirroring to in- crease the size of the training 

dataset. We have utilized the bi-cubic down-sampling and resized the images into the size of 48 × 48. 

5.1.2 Implementation Details 

We first simulate the effect of the geometric transformations as in [28,40,82] to test the proposed framework 

with different geometric transformation effects and under various compression ratios. Specifically, the 
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transformed LR training images are generated by four various transformations, including: (i) The rotation 

effect (R), where the original image is rotated clockwise by 20 degrees; (ii) the original image is scaled with a 

factor of 0.5, the scaling effect represented by S; (iii) the effect of both rotation and scaling represented by RS; 

(iv) translation represented by T, in which the LR images are translated by 5 pixels in both X and Y directions, 

and finally (v) combi- nation effect of rotation, scaling, and translation represented by RTS. Then, the 

transformed images are compressed by utilizing various compression ratios including 50%, 60%, 70%, and 

80%.  

5.1.3 Training Details 

During the training, our proposed framework is optimized by utilizing the stochastic gradient descent (SGD) 

optimization algorithm. The SGD algorithm uses a learning rate of 0.001 with no learning rate decay. We train 

all experiments by set- ting the epochs value to be 20 and the batch size is set to 25. Furthermore, our proposed 

framework is trained in an end-to- end manner. All the training phase is performed on NVIDIA Tesla P100. 

The evaluation results of all experiments are presented in terms of two widely used metrics in the SR research 

community, which are peak-signal-to-noise-ratio (PSNR) and Structural Similarity Index Measurements 

(SSIM). 

5.1.5 Benchmarks Comparisons 

The performance of our proposed framework is validated by comparing it with the existing state-of-the-art 

benchmarks. Specifically, we compare our proposed framework with existing STN [52]. Structurally, VDSR 

is added with our pro- posed framework acting as a post-processing unit, to improve the quality of the output 

image. 

5.2 Computational Complexity Evaluation 

We follow the design of the STN presented in [83], where STN is used to mitigate the transformation effect 

for the traffic line signs. Specifically, the first convolutional layer is de- signed to generate 200 feature maps. 

Then, in the second convolutional layer, these feature maps are increased to 300. These feature maps are used 

to estimate the geometric trans- formation parameters. For our proposed framework, we utilize 16 

convolutional layers to generate 64 feature maps, and two layers are used to generate 128 feature maps, and 

one layer to generate 512 feature maps. Table 1 shows the comparative results between our pro- posed 

framework and the existing STN in terms of the number of model parameters. We represent the convolutional 

layer by Conv(ki; ci; ni) where the variables ki, ni , ci represent the number of feature maps, the number of 

filters, and filter sizes, respectively. In addition, FC (mi, oi) represents the fully- connected layer where the 

variables mi, oi stand for the size of the input vector, and the size of the output vector, respectively. 

The results in Table 1 show that our proposed framework is more powerful in structure, more cost-effective in 

learning, and more capable in capturing contextual information from input images, compared to the existing 

STN. Moreover, it requires less number of parameters to be tuned compared to STN. 

Since the processing time is not only affected by the number of parameters but also dependent on the floating-

point operations (FLOPs), we have compared the FLOPs number of our proposed framework with the existing 

STN. We have followed [84] for calculating the number of FLOPs. As well known, the convolutional and FC 

layers are the most computationally expensive parts in the network. These layers per- form huge numbers of 

multiplication and addition processes. Consequently, most of the FLOPs are consumed in these lay- ers. 

Specifically, the computational cost for the convolution operation is 𝑘 ×  𝑘 ×   𝑛 ×   𝑐 ×   𝑊 ×  𝐻  where k, 

n,  c,  and W H  denote the filter size,  the number of the input fea-  ture channels, the number of the 

convolutional filters, and the size of the input feature. Additionally, the computational cost of the FC layer is 

Nin Nout, where Nin and Nout are the numbers of the input and output neurons, respectively. There- fore, the 

number of FLOPs of the convolutional layers de- pends on the size of the input images. We have selected one 

of the compression ratios (e.g., CR=50%), and then we calculate the number of FLOPs of our proposed 

framework and the existing STN. Specifically, our proposed frameworks re- quire 616.21 million FLOPs at 

CR =50%. On the other side, the existing STN requires 4209.95 million FLOPs at the same CR. Therefore, it 

is clear that STN requires a higher number of FLOPs as its convolutional layer generates a huge number of 

feature maps. As noticed from Table 1, we can see that the STN localization network includes three 

convolutional layers that generate 200, 300, 200 features maps, respectively. As mentioned in Section 4.1.3 

that we are training our model on a powerful GPU, namely Tesla P 100 for PCIe, it is able to perform a few 

teraFlops per second. Therefore, our training process can be performed easily. In general, fortunately, the 

neural networks can be first off-line trained using powerful GPUs and then online fine-tuned, which can be 

accelerated by techniques, e.g., meta-learning. 

5.3 Experiments on Effectiveness and Robustness of Our Proposed Network 

To validate the performance of the proposed framework, ex- tensive experiments have carried out . First, we 

compare the performance of our proposed framework with the VDSR [21]. Second, we have carried out 



Delta University Scientific Journal Vol.06 - Iss.02 (2023) 260-276 

 

Page | 269 

various experiments to compare the performance of our proposed framework with the existing spatial 

transformer network (STN). 

The robustness of our proposed framework is tested against various transformation effects and different com- 

pression ratios. We transformed the original images with simulated geometric transformations that are 

mentioned previously in Sec.4.1.2, including rotation (R), scaling (S), rotation and scaling (RS), translation 

(T), and combination of rotation, scaling, and translation (RTS). In addition, we have compressed the original 

images using various compression ratios, e.g., 50%,60%,70%, and 80%. To this end, we have evaluated the 

performance of our proposed framework in five experiments compared to the existing state-of-the-art STN 

networks [52]. Then, we show the ability of our proposed framework to recover HR images from its compressed 

LR images. 

 

Table 1: Comparison between the proposed FTN and the existing STN in terms of the number 

of parameters. 

 

Layers STN [52] Parameters Proposed DFTN Parameters 

Preprocessing Max Pooling (2,2) / Max Pooling (2,2) / 

 

 

 

Feature Extraction 

1×Conv(5,200,3) 

ReLU 

MaxPooling(2,2) 

 

15200 
2×Conv(3,512,64) 

ReLU 

 

589952 

 
1×Conv(5,300,200) 

ReLU 

MaxPooling(2,2) 

 

15180300 

14×Conv(3,64,64) 

ReLU 1 
516992 

×Conv(3,64,128) 

ReLU 
73856 

1×Conv(3,128,64) 

ReLU 
73792 

1×Conv(3,128,512) 

ReLU 
590336 

Fully Connected layer FC(2700,200) 540000 FC(294912,30) 8847360 

Classifier FC(200,6) 1200 FC(30,6) 1800 

Total parameters  16276700  9344088 

 

 
Table 2: The experimental results achieved by the existing STN compared with our proposed 

framework in terms of PSNR/S- SIM values under the Rotation effect. 

 

 50% 60% 70% 80% 

STN 12.96/0.6292 12.18/0.6279 15.07/0.5411 15.67/0.5651 

Existing STN+VDSR 16.26/0.5549 16.64/0.5508 13.06/0.6256 16.46/0.5598 

Proposed framwork 27.11/0.9129 f26.66/0.8955 26.56/0.8958 25.91/0.884 

 

 
Table 3: The experimental results achieved by the existing STN compared with our proposed 

framework in terms of PSNR/S- SIM values under the Scaling effect. 

 

 50% 60% 70% 80% 

STN 16.30/0.5703 16.72/0.5932 12.11/0.6334 12.20/0.6318 

Existing STN+VDSR 16.29/0.5630 16.66/0.5612 13.06/0.6256 16.34/0.5594 

Proposed framework 26.26/0.8988 25.89/0.8876 25.33/0.8779 24.98/0.8729 

 

 
Table 4: The experimental results achieved by the existing STN compared with our proposed 

framework in terms of PSNR/S- SIM values under the Rotation and scaling (RS) effects. 
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 50% 60% 70% 80% 

STN 16.56/0.5803 16.27/0.5464 15.66/0.5532 15.62/0.5627 

Existing STN+VDSR 16.08/0.5492 16.55/0.5485 13.32/0.6208 16.30/0.5547 

Proposed framwork 26.12/0.8943 25.60/0.8845 25.44/0.8761 24.83/0.8653 

Table 5: The experimental results achieved by the existing STN compared with our proposed framework in 

terms of PSNR/S- SIM values under the translation (T) effect. 

 

 50% 60% 70% 80% 

STN 16.40/0.5607 12.23/0.6094 11.86/0.6064 16.18/0.5255 

Existing STN+VDSR 15.79/0.5265 16.34/0.5372 18.10/0.7146 15.95/0.5328 

Proposed framework 26.92/0.9147 26.61/0.9034 26.19/0.8952 25.50/0.8838 

 

Table 6: The experimental results achieved by the existing STN compared with our proposed framework in 

terms of PSNR/S- SIM values under the RTS effect. 

 

 50% 60% 70% 80% 

STN 14.97/0.6951 15.69/0.5405 15.22/0.5568 18.15/0.7032 

Existing STN+VDSR 15.87/0.5439 16.54/0.5559 15.86/0.5439 12.54/0.6039 

Proposed framework 25.56/0.8862 25.03/0.8689 24.87/0.8659 24.59/0.8587 

 

Structurally, we add the VDSR with the existing STN to formulate a new benchmark, referred to as STN-

VDSR. Tables 2, 3, 4, 5, and 6 show experimental for the existing STN- VDSR and our proposed framework 

under a number of trans- formation effects and various CRs. From the results shown in Table 2, we can see 

that the performance of our proposed framework outperforms the existing STN in terms of both PSNR and 

SSIM. 

The simulation results show that the PSNR values of our proposed framework are higher than the existing 

framework by 7 dB in all test datasets and different CRs. This achievement is due to the fact that our proposed 

framework transfer the input image to the feature domain. Therefore, utilizing the feature extraction network 

facilitates the extraction of deep features from the input images. Furthermore, these features are used to 

estimate the geometric transformation parameters efficiently. 

5.3.1 Experiment on Convergence 

We also test the convergence of the proposed framework ac- cording to the loss function (7) compared to the 

STN-VDSR and the convergence curves during the training, and testing steps are presented. In addition, the 

performance of our pro- posed framework is tested by calculating the PSNR/SSIM values during each epoch 

to compare these values with the existing STN. 

The convergence of our proposed framework under the rotation(R) effect and CR=50%, and the corresponding 

PSNR/SSIM values are presented in Fig.  4. The results in Fig.4 indicate that our proposed framework has 

lower loss function values compared to the existing STN. Furthermore, the PSNR/SSIM curves validate the 

superiority of our pro- posed VDST in terms of both PSNR and SSIM values. To provide a comprehensive 

assessment, the convergence of our proposed framework under a stronger transformation effect which is a 

combination of rotation, translation and scaling (RTS) with CR=50% is tested, and it is compared with the 

existing STN as shown in Fig.5. From the results shown in Fig.5, it can be confirmed that our proposed 

framework has lower loss function values and higher PSNR/SSIM compared with the existing STN. 

 

6. Conclusion 

In this paper, we have presented enhanced Compressed Sensing based Deep Neural Network for Single Image 

Super Resolution of COVID-19 using X-ray Images. Our proposed framework has shown immunity against 

the weaknesses of the widely-adopted STN. Our proposed framework owns a number of features over the 

existing STN, including 1) our pro- posed framework is able to extract the content-characterized deep features 

out of the compressed input LR in feature do- main to estimate the geometric transformation parameters and 

control the super-resolution process; 2) our proposed FRU is able to refine the multi-channel feature maps such 

that more details and their hierarchies can be revealed and provided to achieve better construction of the output 

images as well as a higher level of robustness; 3) our proposed framework is able to enhance the construction 

of the output images with higher level of robustness. Extensive experiments and comparative analysis have 
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proven the powerful capability of the proposed DFTN to tackle complex computer vision problems in 

comparison with the existing STN, such as robust single image super-resolution. 

 

 

 
 

Fig. 4: Experimental results for convergence test and performance test under the rotation effect and CR=50% : 

(a) Convergence test for loss function values during the training phase; (b) Convergence test for loss function 

values during the validation phase; (c) Performance test for PSNR values; (d)performance test for SSIM 

values. 
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Fig. 5: Experimental results for convergence test and performance test under the RTS effect and CR=50% : 

(a) Convergence test for loss function values during the training phase; (b) Convergence test for loss function 

values during the validation phase; (c) Performance test for PSNR values; (d)performance test for SSIM values. 
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