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ABSTRACT  

The term "Internet of Things" (IoT) refers to a group of gadgets that are capable of connecting to the Internet in 

order to gather and share data. The growth of Internet connections and the arrival of new technologies like the 

Internet of Things (IoT) have increased the privacy and security threats associated with the introduction of various 

gadgets. In order to increase the detection of cyber-attacks, industries are increasing their research spending. 

Institutions choose wise testing and verification techniques by comparing the highest rates of accuracy. IoT use has 

been accelerating recently across a variety of industries, including health care, smart homes, intelligent 

transportation, smart cities, and smart grids. where technology researchers and developers started to take notice of 

the IoT possibilities. Unfortunately, the privacy and security concerns imposed on by energy restrictions and the 

scalability of IoT devices present the most significant challenge to IoT. Therefore, how to address the IoT's security 

and privacy challenges remains an essential issue in the field of information security. With a decentralized design, 

edge computing plays a vital role in enabling IoT devices to compute, make decisions, take actions, and push only 

pertinent information to the cloud. Since sensitive data is more readily available and can be used right away, the 

IDS performs better when employing machine learning (ML) and deep learning (DL) algorithms to identify and 

prevent various threats. In terms of technical limitations, this study classifies the current, recent research in IoT 

intrusion detection systems employing machine learning, deep learning, and edge computing architecture. 

Keywords: (Intrusion detection system (IDS), Internet of things (IoT), Machine learning, Deep learning, Anomaly 

detection) 

 

1. Introduction 

In recent years, the Internet of Things has seen explosive expansion in industry-specific applications like healthcare, 

transportation infrastructure, smart agriculture, and industries to enhance economic growth [1]. These Internet of 

Things (IoT) systems consist of a large number of networked sensors, actuators, and various network-enabled 

devices [2] that exchange various types of data across both the public Internet and private networks. By 2025, the 

IoT is expected to have an average of 75.3 billion actively connected devices, according to Cisco research [3,4]. 

IoT technology differs from conventional Internet technology in that human intervention is not required during 

data sharing between systems. The need for data network bandwidth has expanded along with the growth of IoT 

devices. However, the majority of IoT devices have resource limitations, making it difficult to implement the 

conventional system security approaches. The majority of IoT devices, however, have resource limitations, making 

it difficult to implement traditional security techniques for system protection against cyberattacks. In order to 

overcome the resource-constraint issues in IoT systems, edge computing—which enables computation to be 

conducted at the network end—must be introduced [5,6]. IoTs can transfer very computationally heavy operations 

to the local edge server thanks to edge computing [7]. It is important to consider cyber-security seriously since the 

IoT has evolved into the engine of the present industrial revolution and the system for gathering live sensitive data 
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[8,9]. To secure the IoT network and the systems built on it, an Intrusion Detection System (IDS) that can detect 

existing and upcoming cyberattacks is required. 

A number of surveys on various IoT security-related research areas, such as security frameworks [10], healthcare 

security [10], privacy concerns [11], state of the art and security issues [12], models, methods, and tools [13], and 

attacks [14], have been published. Some of these articles were released when IoT systems were still in their 

beginnings. The application of ML approaches to improve IoT security is the main topic of this study. 

We also look into how the development of edge computing can help with the creation of an efficient security system 

(IDS) for IoT systems. This work also contributes to our understanding of the implementation approaches, the IoT 

dataset used, and the state-of-the-art IDS design for resource-constrained IoT employing the edge and cloud 

computing.  

The research expands on the design strategies employed by researchers and shows how the suggested methods 

work with IDS design for IoT systems with edge and cloud advances. We also illustrated various options for 

selecting IDS for IoT devices depending on a few factors.  Results from a study of the relevant research articles in 

this area, the following views are used to serve the researchers: 

• presenting and discussing the main significant IoT issues that have arisen in current research trends. 

•  discussing the ML-based IDS developed for the Internet of Things and their implementation methods. 

• In this survey, we discuss the placement strategies utilized to create IDS for IoT systems and evaluating the 

feasibility of developing security mechanisms for the IoT using edge technology. 

• presenting several metrics and datasets that were utilized to produce IDS for IoT systems. 

 

2. IoT Architecture and Security Threats 

More progress in IoT systems and applications are expected than anyone could probably predict [15]. However, 

IoT technology development is still growing and has not reached its full security protection capability. Multiple 

security issues with IoT systems exist [14], as shown in Figure 1.  

 
Figure 1: Intrusions in IoT networks 

 

Due to the IoT system applications' rapid spread of technology usage, several network attacks have also arisen [16]. 

Additionally, the IoT community does not adopt a standard specified security architecture. Depending on the use 

case, system requirements, available technology, and IoT network scale, various security designs are implemented. 

For instance, the authors suggested various intelligent security architectures to monitor and track patients' medical 

information in the intelligent health use cases covered in the research papers in [17]. Data sensitivity varies among 

IoT use cases. 
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As a result, creating security for each circumstance needs particular application knowledge. Thus, it is clear that 

NIDS built to address the varied IoT architectures and use cases need adaptation [18]. The network and 

infrastructure of IoT systems must also be protected, in addition to using encryption techniques to secure data 

transmission. Unfortunately, the nature of the resource limitations prevents the use of traditional network security 

mechanisms in IoT systems. Table 1 shows the attacks have been performed against IoT systems in the recent 

years. 

 

Table 1: Recent attacks against IoT systems 

 

Type  Description  Attack mode  
Spoofing attack To take over or gain unauthorized 

access to a network, attackers pretend 

to be a legitimate Internet of Things 

system. Attackers launch DoS and 

Man-in-the-Middle cyberattacks 

against targeted devices once they 

have access [19]. 

Impersonation 

Denial of Service (DoS) A cyberattack renders IoT resources or 

systems unreachable to the intended 

authorised users of the network. The 

purpose of these attacks is to 

temporarily or permanently interrupt 

the functions of a host IoT system [20-

21]. 

Network Flooding 

Distributed denial-of-service 

(DDoS) 

This attack has the potential to 

interfere with both normal traffic and 

the services provided by the network. 

It saturates a target's or the 

neighborhood's infrastructure with 

extremely heavy network traffic [22]. 
When attackers use several 

compromised computing systems as 

the sources to produce a lot of network 

traffic, DDoS attacks are successful. 

[23, 24]. 

Network Flooding 

Jamming attack The majority of IoT devices use 

wireless networks to connect to other 

devices. 

Attacking the targeted IoT system, the 

culprits deplete its memory, 

processing power, and bandwidth by 

sending a phone signal to break up 

radio communication [25, 26]. 

False signals 

Man-in-the-middle attacks attackers eavesdrop on the 

participants' private conversations 

while covertly relaying and 

manipulating the communication 

between two IoT systems and remote 

devices [27, 28]. 

Message Eavesdropping 

Mirai attack Using malware called Mirai, 

cybercriminals can use networked 

devices as part of a botnet in a wide 

network that can be remotely 

controlled. It primarily targets online 

consumer electronics, including 

Injecting malware on devices 
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routers and IP cameras. Mirai was 

frequently used as an initiator in 

attacks like DoS/DDoS [29, 30]. 

Sybil Attack alters the identity of the IoT device to 

generate numerous anonymous 

identities and use an excessive amount 

of power. It was given that name in 

honour of Sybil, who wrote the book 

Sybil, a case study of a lady coping 

with dissociative identity disorder. 

[31, 32]. 

creation of anonymous 

identities 

 

 

3. ML Based Intrusion Detection Systems for IoT networks 

An IoT network's device-to-device traffic packets is monitored by IDS. It serves as a line defense that can detect 

dangers and prevent the network from unauthorized access and malicious attacks. The main defense against 

network intrusion and other threats in modern computer networks is IDS.NIDS analyses and examines the network 

and logins on the hosted device and finds signatures of known threats and unknown dangerous malware attacks on 

a network itself. Monitoring the IoT network, identifying illegal intrusions, and enabling context-awareness to other 

systems devices linked to the network and taking the required defensive measures, are other objectives of the 

IDS.  When IDS detects both internal and external threats, it will also generate an alert or set up attack flags, Figure 

2 shows the components of IDS.  
 

 

Figure 2: Components of intrusion detection systems 

 
Through the network-connected IoT devices that have been compromised by cyberthreats, internal attacks are 

initiated. External cyberattacks are started by third parties outside of the dominant network. IDS [33] primarily 

consists of three general components: observation, analysis, and detection. The Observation module collects data 

of the patterns, resources, and traffic on the network. The main components of IDS are typically analysis and 

detection of the traffic data using ML or DL algorithms. Based on predetermined algorithm, they can identify 
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intrusions. When an intrusion is discovered, the alert module raises attack flags [33]. This study has covered the 

following topics: security threats, detection method, IDS placement strategy, validation approach and datasets. This 

is because developing IDSs for IoT devices raises a significant challenge for data security researchers. Figure 3 

shows the brief taxonomy of the survey 
 

 
Figure 3: Taxonomy of IDS 

 

4. IDS According to The Detection Strategies 

However, a detailed analysis at the cyberattack on the IoT system reveals that there is always a behavioral pattern 

in the attacks [34], which can be discovered when ML and edge as well as cloud computing are combined to better 

build IDS. This section provided a detailed analysis of the many categories of IDS used in IoT networks. 

Researchers have included the conventional methodologies to develop ML based IDS and proposed several models. 

We divided IDS into Signature, Anomaly based categories [35] based on the framework, implementation, and 

operation. 

4.1. Signature-Based NIDS in IoT Systems 

This method detects attack patterns based on the presence of its signature in the system. However, this method is 

unable to detect new malware attacks whose signatures are absent from the list. Large datasets are frequently 

needed for signature-based NIDS in order to build reliable detection systems for IoT. The resources of IoT devices 

must be taken into account when restructuring traditional signature-based NIDS. There have been numerous 

attempts to create signature-based NIDS for IoT devices. A signature-based NIDS framework was proposed by 

Kasinathan et al. [36]. Their technology recognizes DoS attacks in networks based on 6LoWPAN [37]. To test their 

suggested methodology, the authors used Suricata, an open-source signature-based NIDS software [38]. Suricata, 

which does not explicitly target IoT networks, was created to detect infiltration in generic computer networks. 

Furthermore, there was no conclusive proof of Suricata's influence on the use of IoT devices in their investigation. 

The authors provided many methods for creating NIDS to safeguard the environment in [39-42]. the authors 

discussed various IDS design approaches for protecting IoT devices. The authors developed signature-based IDS 

using ML techniques to identify network intrusions in IoT devices. The authors used deep reinforcement learning 

to develop NIDS for industrial IoT in [43,44]. This method combines deep learning's observational powers with 
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reinforcement learning's decision-making capabilities to enable the efficient detection of various cyberattacks on 

the Industrial Internet of Things. Although the experimental findings in each of the research papers are encouraging, 

the authors were unable to show how their approach will work in an actual IoT network scenario. 

4.2. Anomaly-Based NIDS for IoT Systems 

This method is used by organizations to identify malwares, for which identification is difficult using the signature-

based detection method. In this method, ML is used to create an activity model [45].  

This method is effective at discovering new IoT system attacks. Particularly, those attacks initiated the misuse of 

the resources of IoT devices. A number of IDS created to protect IoT devices use anomaly-based techniques since 

they may be modelled to be lightweight. The authors of deployed ANN to identify intrusion in the gateway of the 

IoT system in [46-49]. To find anomalies in the data sent from the edge devices, they used ANN. The gateway was 

a high-resource network device that the researchers linked along with several IoT devices. Their outcomes were 

encouraging. The authors of [50–52] presented an IDS algorithm that leverages anomaly detection systems based 

on several ML techniques to identify threats in IoT systems. An IoT network attack often leaves its impact on the 

system, according to the authors. The authors suggested three methods, using this method to find these anomalies 

in their network. They did not, however, show any experimental evidence of false-positive rates, which is a 

significant issue with anomaly-based IDS. The authors also conducted a new investigation into how much memory 

and power Internet of Things devices need. The authors of [53,54] presented a smart home IDS that adapts 

autonomously to changing circumstances in the smart home by modifying the decision function of its underlying 

anomaly classification models. The research studies in this subsection show that anomaly-based IDS frequently 

begin by creating a baseline of the network's typical activity and traffic. Although they can be scaled down to be 

lightweight, anomaly-based NIDS are suitable for IoT systems 

5. IDS According to The Information Source 

The mode of operation of IDS designs for IoT can also be used to categorize them. The two primary modes in 

which NIDS operate are host-based and network-based. 
5.1. Host-Based IDS for IoT Systems (HIDS) 
HIDS is installed on independent networked devices by organizations. This system detects the organization traffic 

and alerts the administrator if any suspicious activities occur. One attribute of HIDS is that file systems storing the 

network analytical are protected from misplacements or changes and then an alert is sent to the administrator [55]. 

An IoT HIDS that can identify cyberattacks was created by Wang et al. [56]. The authors used experimental 

evidence to show that mimicking attacks do exist and that their prevention is necessary. The authors of [57] suggest 

a HIDS that was developed and designed to protect IoT devices, which form the core of IoT networks. Their method 

involves a group of suggested IDS that carry out conventional security verification and interact with HIDS 

controller to enable the coordination of intrusion detection actions in response to IoT devices targeted by DDoS 

attacks across the network. 
5.2. Network-Based IDS for IoT Systems (NIDS) 

NIDS monitors device traffic of the entire network, examines this traffic, and thereafter verifies the data against 

the packet metadata and content. An alert is sent to the network administrator if intrusions in the network are 

detected. One attribute of NIDS is the presence of a protecting firewall, owing to the system being installed at the 

same location [55]. NIDS, according to the authors [58], needed a lot of data in order to make intelligent decisions. 

The differences between host-based and network-based NIDS are shown in Table 3. 
6. Datasets for IDS Design in IoT Systems 

An ML-based IDS design must include the dataset. It consists of features identified during both normal and 

anomalous functioning of the targeted systems. Innovative techniques and detection algorithms for IoT networks 

required a preplanned dataset.  Network packet extraction flows, system logs, and sessions are the three most typical 

data creation sources for IDS for IoT. It can be challenging and time-consuming to create a dataset specifically for 

IoT IDS. An overview of a number of popular public datasets utilized by the scientific community for IDS design 

can be found in Table 2. 

The majority of researchers decide to build their own datasets for the ML-based IDS training. Regardless of how 

challenging it is to create a dataset, it is necessary to evaluate and compare models using a widely used benchmark 

dataset. To train IDS, researchers used numerous datasets. The KDD-Cup'99 [59], which was made for the KDD 

competition and comprises 41 features similar to a NetFlow dataset, is one of the most often cited datasets in the 

literature. The Canadian Institute of Cybersecurity produced the UNB-ISCX 2012 [60], CICIDS 2017 [61], and 

AWS (CSE-CIC-IDS 2018) [62] datasets. The dataset, according to the authors [63], was built using data from 

five days of both normal and attack traffic. The majority of the essential modern and updated attack criteria, 

including DoS, DDoS, Brute Force, XSS, SQL Injection, Infiltration, Port scan, and Botnet, are present in the 

CICIDS2017. Eighty features were retrieved from the dataset using the flow meter [64]. The UNSW NB15, which 

was produced by the defense force academy of University of New South Wales Australia, is another popular dataset 
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that is now being utilized as a benchmark for IDS in IoT [65, 66]. Through realistic network operations, the UNSW 

NB15 was developed based on the most recent attack categories. Ten (10) different types of attacks are included in 

the UNSW NB15 dataset: analysis, backdoor, denial-of-service, exploit, fizzers, generic, reconnaissance, shellcode, 

and worm. There are already a number of open-source datasets that focus on various IoT cyberattacks. The authors 

of [67] simulated several network threats in an IoT scenario. Their dataset includes the Mirai Botnet, benign, mitm-

arpspoofing, DoS-synflooding, scan-hostport, and scan portos. IoTID20 is a dataset developed by Ullah et al. [68] 

for the IoT IDS. The IoT botnet dataset, which is appropriate for DoS attacks, was suggested by the authors. 

IoT/IIoT service telemetry, Operating System logs, and IoT network traffic were all acquired from a realistic 

approximation of a medium-scale network at the UNSW Canberra Cyber Range and IoT Labs, according to a new 

dataset named TON IoT proposed by Moustafa [69]. A CPPS testbed based on OPC UA was used to develop and 

inject a number of attacks to produce the OPCUA dataset [70], which enables users to evaluate the effectiveness 

of different IDS building techniques in an industrial environment. About IDS in IoT systems is addressed in details 

in Table 6. Anomalies in industrial IoT are detected using datasets like the ELEGANT dataset [71-73], which 

targets DoS/DDoS attack in IoT and SDN-based IoT networks. The MQTT protocol IoT network's MQTT-iot-

ids2020 dataset [74] detects network intrusion. In order to identify DoS/DDoS attacks, information gathering, Man 

in the Middle attacks, Injection attacks, and Malware attacks, the Edge-IIoTset dataset [75] was also developed 

for industrial IoT. The IoT-BDA Botnet Analysis Dataset [76], which was developed to make it simpler to develop 

host and network-based IDS, is the last dataset on the IDS IoT system radar. For researchers to create reliable IDS 

to secure the IoT system, all of the aforementioned datasets are openly available. 

Table 2: Popular public datasets for IDS 

Dataset name Year  Categories   

CSE-CIC-IDS2018 [62] 2018 DoS 

DDoS 

Brute Force 

XSS 

SQL Injection 

Infiltration 

Portscan 

Botnet 

TON_IoT Dataset [68] 2019 DoS 
DDoS 
ransomware 

THE BOT-IOT DATASET [77] 2019 Normal  

DDoS 

DoS 

OS Fingerprinting  

Service Scan 

Keylogging 

Data Theft  

Mqtt-iot-ids2020 

DATASET [71] 

2020 Normal 

aggressive scan 

UDP scan 

Sparta SSH brute-force 

MQTT brute-force attack. 

OPCUA dataset [70] 2020 DoS 
Eavesdropping 
Man-in-the-middle, 
Impersonation 
Spoofing attacks 

IOT-BDA BOTNET ANALYSIS 
DATASET [76] 

2021 Port scanning 
Exploitation 
C2 communications 
DDoS 

X-IIoTID dataset [78] 2021 Brute force attack 
dictionary attack 
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the malicious insider 
reverse shell 
Man-in-the-Middle 

Edge-IIoTset DATASET [75] 2022 DoS 
DDoS attacks 
Information gathering 
Man in the middle attacks, 
Injection attacks 
Malware attacks 

 

7. IDS According to The Architecture Strategy  

We also classify the IDS according to how they are deployed, as shown in Figure 4. This type of IDS is relying on 

the placement, position, and part of the system where it is located. The placement strategies for IDS in IoT systems 

are discussed in this subsection. 

Figure 4: IDS architecture strategies 

7.1. Centralized Placement IDS for IoT Systems 

ML model is built in the cloud. Sending data to the cloud server; the user uses the model using API; sending request 

in order to access the service. IDS examines all the traffic from the connected IoT devices that enters and exits the 

border router in the centralized manner. The centralized deployment approach has the drawback of failing to detect 

attacks on internal IoT networks. The centralized placement strategy was employed by the authors of [36] to 

implement their suggested IDS. Their research concentrated on mitigating DoS attacks against IoT systems. In 

order to detect and analyze network data, they needed a dedicated host. They used a wired network connection to 

link the host IDS while using wireless connections for the other IoT devices. In the case that the network is hacked, 

the method aids the IDS in detecting the DoS attacks. A border router-based centralized IDS was the idea 

proposed by Wallgren et al. [79]. Their primary objective was to find IoT network threats. The authors suggested 

an IoT heartbeat protocol that would send ICMPv6 echo requests to all border routers and other IoT devices network 

to identify intrusions. Additionally, Jun et al. [80] proposed Complex Event-Processing. (CEP) solutions for IoT 

system network intrusion detection. The writers used an organized strategy and installed the NIDS in the border 

router to keep an eye on the network traffics. Utilizing event features is the suggested system's primary benefit. In 

addition, some researchers have studied the attack detection algorithms based on ML algorithms and DL neural 

networks for IoT systems as shown in Table 3. 

 

 

Table 3: Study on ML algorithms and DL neural networks for IoT systems 
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Research Model Classification 

type 

Shortcomings 

Fatani, et al. 

2021 

[81] 

CNN-TSODE Binary Sending training data to central 

model leads to the inefficiency 

of bandwidth and energy 

concerns 
Multi 

Ferrag, et al. 

2020 

[82] 

DNN Multi 

 

High communication overhead 

associated with sending raw 

data to the central node 

RNN 

CNN 

Ferrag, et al. 

2019 

[83] 

RNN Multi 

 

Increasing network scale 

decreases the performance 

Aldhaheri, et al. 

2020 

[84] 

DeepDCA 

(DCA-SNN) 

Binary 

 

Single point of failure affects 

QoS 

Pokhrel, et al. 

2021 

[85] 

NB Binary High costs of gathering data to 

central node over the 5G/6G 

network 
KNN 

ANN 

Kumar, et al. 

2021 

[86] 

RF Multi Transferring of personal data to 

centralized entity affects the 

privacy XG Boost 

Hussain, et al. 

2021 

[87] 

NB Binary Collecting sensitive data of end 

users raises privacy preservation 

concerns 

KNN 

RF 

Log R 

DT 

Shafiq, et al. 

2020 

[88] 

DT Multi Model is time consuming due to 

centralized processing NB 

RF 

SVM 
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7.2. Distributed Placement IDS for IoT Systems 

The Cloud distributes the local model to each device; local models with local datasets; connection to the cloud no 

longer needed [89]. The IDSs are distributed across the network's numerous IoT devices under the decentralized 

placement method. Each system must be configured separately, and the NIDS must be lightweight due to the 

resource limitations of the IoT system. Lightweight DL models have been developed for edge computing. To 

classify benign traffic from distributed denial of service (DDoS) attacks, Roberto et al. [90] proposed LUCID, a 

lightweight IDS that is based on CNNs and exhibits excellent pattern-recognition ability. Latif et al. [91] presented 

a novel lightweight random neural network (RaNN) for prediction of attacks such as DoS, malicious operation, 

malicious control, data type probing, spying, and scans. The RaNN is compared with the traditional ANN, SVM, 

and DT and achieves higher attack detection accuracy (by an average of 5.65%) than the other algorithms. 

Watchdogs are Internet of Things (IoT) devices that are set up to monitor vulnerabilities in local linked devices. 

This positioning technique was applied by Cernantes et al. [92] in their research. 

The watchdog was employed by the INTI to identify and stop attacks. In their experiment, an IoT device was 

selected as the head node or the leader of the network clusters. Due to the network reconfiguration policy that 

connected IoT devices introduced, each device's function may vary over time. An IoT device broadcasts a message 

to other devices whenever it notices an intrusion to protect them. The IDSs are distributed among the numerous 

IoT devices under the decentralized placement strategy. A distributed and lightweight NIDS built on an Artificial 

Immune System was created by Farhoud et al (AIS). They dispersed their AIS amongst IoT, the edge, and the 

cloud. A distributed NIDS that detected attacks was created by the authors in [93], with such a part of the detection 

model hosted on an IoT device and the residual model hosted on ISP resources (ISP). They created the IDS to 

protect house gateway systems that link Internet-connected smart home IoT gadgets to one another. An IDS system 

created and tested by Zeeshan et al. [94] is best suited for small IoT devices. They applied a process for managing 

trust that enables IoT devices to handle crucial data about connected neighbors. The IoT device can distinguish 

harmful patterns in the network thanks to this method. [95] suggested an IDS that makes use of information flow 

processing to collect event data from distributed sources as soon as significant data is received. Additionally, their 

technology was capable of real-time intrusion detection. In order to detect intrusions, a collaborative NIDS was 

suggested in [96] by distributing the IDS model among the numerous IoT devices. By splitting the expense of 

monitoring the IDS across the IoT devices, the amount of energy, processing capability, and storage capacity 

needed for the detection was reduced. Furthermore, Brik et al. [97] applied the features of FL to UAV-enabled 

wireless networks led to a decrease in the communication overhead while maintaining the data privacy in a 

distributed manner. 

 

2.2. Federated Placement IDS for IoT Systems 

Some distributed systems have a centralized IDS that supervises the other security systems placed in other IoT 

systems in the same network [98]. McMahan et al. [99] (the Google team) presented an alternative technique to 

centralized learning of deep networks. This technique involved leaving the data of the training distributed on the 

mobile devices, locally training mobile models, aggregating locally computed updates to the server, learning global 

models, and broadcasting learning updates to local models. They referred to this approach as “Federated Learning.” 

This method preserves the privacy of the local trained data, which is necessary for various fields. Nguyen et al. 

[100] presented (DÏoT) an anomaly detection for IoT systems based on a self-learning federated distributed system, 

Gated Recurrent Unit (GRU), a type of RNN. DÏoT was the first algorithm that employed the federated learning 

approach in detecting intrusions. The results revealed the high accuracy and rapid detection rate of DÏoT (95.6% 

and 257 ms). However, low end devices are problematic, owing to the long training time of GRU.  Wang et al. 

[101] developed an algorithm which, compared with DÏoT, is better suited for these devices by adjusting the FL 

algorithm. A multitask deep neural network in federated learning (MT-DNN-FL) has also been proposed by Zhao 

et al. [102]. The CICIDS2017, ISCXVPN2016, and ISCXT datasets were used in the performance evaluation of 

this algorithm. The results revealed that the proposed algorithm has a good detection rate with respect to the 

multitasks and reduces the training time compared with that of centralized training. However, optimization of the 

DNN structure is required in order for the proposed model to cope with restrictions of IoT devices. Chatterjee et 

al. [103] proposes a Probabilistic Hybrid Ensemble Classification (PHEC) model in the centralized and federated 

mode The study revealed that, compared with these modes, the FL mode performs better regarding privacy issues 

of the data and the problem of data processing in a single system. Man et al. [104], presented a FEDACNN model 

based on CNN to solve the communication delay issue in the system by reducing communication rounds to 50%. 

Rajendran et al [105] proposed two FL models with ANN and LR for patient data privacy and security in healthcare 

systems. Due to the lower complexity of LR (compared with that of other methods) and lack of epochs, FL will 

yield no improvement in the performance of the model. Compared with ANN models, FL yields better accuracy 
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and privacy. Chen et al. [106] presented a Federated Learning-based Attention Gated Recurrent Unit (FedAGRU) 

algorithm for securing wireless edge networks with intrusion detection. Furthermore, the study also proposed a 

mechanism for avoiding the upload of unimportant data to the cloud and increasing the weight of important devices 

in order to decrease communication overhead. The results showed that the proposed FedAGRU algorithm enhanced 

the accuracy by 8% and reduced costs by70%, respectively, compared with centralized systems and other FL 

algorithms. Rieke et al.  [107] discussed the impact of FL on the future of digital healthcare by considering the 

issues regarding medical sensitive data privacy, which can be achieved without exchanging or centralizing data 

sets. However, the corresponding security issues remain unexplored.  

 

8. IoT-based IDS with ML/ DL and Evaluation Metrics 

The metrics and benchmark datasets, as well as some of the common ML methods, are the main topics of this 

section of the survey. Real-time data from the network of the installed devices, rather than modelling or simulation, 

is the best way to evaluate any IDS. Other classification models may view data packets that some ML-based IDS 

algorithm classifies as an intrusion in a network as valid. To evaluate IDS, researchers employ a variety of metrics. 

No one indicator appears to be sufficient to examine the performance and efficiency of IDS. According to [108], 

the Detection Rate (DR) and False Alarm Rate (FAR). of an IDS can be used to assess its performance According 

to all of the aforementioned evaluations, the performance of the IDS created for an IoT use case may varies. The 

type of metrics depends on the implementation procedure, the attack type, the resource of the IoT device, and the 

machine learning applied during the IDS. 

However, accuracy, recall/sensitivity, and F1-Score are the metrics that researchers employ the most frequently. 

The effectiveness of an IDS for IoT systems is evaluated using metrics like false negative rate (FNR), and false 

positive rate (FPR), as shown in Table 4. 

 

Table 4: Evaluation metrics for IDS 

Metric Equation Definition 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Ratio of correctly predicted instances to total number 

of predicted instances. 

Precision 

(Detection rate) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Ratio of the correctly predicted positive instances to 

total positive predictions. 

Recall 

(Sensitivity) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Ratio of the correctly predicted positive instances to 

the overall available positive data category. 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Ratio of the correctly predicted negative instances to 

the overall available negative data category. 

F1-score 2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Hybrid metric indicates the overall performance of 

the model respecting to Both precision and recall, 

useful for unbalanced classes 

False alarm rate 𝐹𝑃

𝐹𝑁 + 𝐹𝑃
 

Ratio of false positive alarms per the total number of 

false prediction warnings or alarms. 

 

 

No matter how long NIDS have been in development, they still have trouble improving detection accuracy, 

reducing overall on false alarms, and identifying newly developed attacks. Modern researchers concentrated on 

creating IDS that make use of ML techniques in order to solve the aforementioned issues. With great accuracy, ML 

algorithms automatically detect the distinctive features in abnormal data present inside normal data. Additionally, 

because ML algorithms have significant generalization potentials, they can recognize unidentified attacks [109]. 

ML-based NIDS are intended to monitor the host and its settings, examine the behavior of the systems, produce 

alerts, and react to any suspected attacks [110]. K-NN and Naive Bayes were employed by the authors of [111] to 

detect intrusion. The NSL-KDD dataset was used to test their model. In [112,113], the authors suggested a logistic 
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regression-based IDS model (BOTNET) for IoT device intrusion detection. Researchers have developed IDS for 

IoT systems using ML techniques as Decision Tree [114], K-Mean [115], DNN (using the NSL-KDD dataset) 

[116], and CNN (using the NGIDS-DS and ADFA-LD dataset for benchmark) [117]. The most popular neural 

network ML-based techniques employed by the research community to develop IDS for IoT include RNN, LSTM, 

GRU, and GAN [118,119]. Table 5 shows the state of the art of the ML based IDS. 

 

Table 5: Comparative study on the ML based IDS. 

Ref Model Classification 

type 

Accuracy Precision 

(detection 

rate) 

Recall F1-

score 

Mode Integration 

with 

blockchain 

Fatani, A.; 

et al. [81] 

CNN-

TSODE 

Binary 99.99% 99.99% 99.99% 99.99% Centralized No 

Multi 99.04% 99.04% 99.04% 99.04% 

Ferrag, 

M.A.; et al. 

[82] 

DNN Multi 

 

98.37% --- --- --- Centralized No 

RNN 

CNN 

Ferrag, 

M.A.; 

Maglaras, 

L. [83] 

RNN Multi 

 

98.20% ----- --- --- Centralized No 

Aldhaheri, 

S.; et al. 

[84] 

DeepDCA 

(DCA-

SNN) 

Binary 

 

98.73% 99.17% 98.36% 98.77% Centralized No 

Pokhrel, S.; 

Abbas, R.; 

Aryal, B. 

[85] 

Naive 

Bayes 

Binary 51.5%  ---  ---  --- Centralized  

No 

KNN 92.1%  ---  ---  --- 

ANN 82.8%  ---  ---  --- 

Kumar, P.; 

et al. [86]  

RF Multi 99.99% 99.99% 99.99% 99.99% Centralized Yes 

XGBoost 99.99% 87.77% 94.36% 87.90% 
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Hussain, F.; 

et al. [87] 

NB Binary 52.18% 79.67% 99.70% 69.50% Centralized No 

KNN 99.48% 99.65% 99.68% 99.58% 

RF 99.51% 99.70% 99.79% 99.65% 

Log R 99.50% 95.28% 90.39% 94.70% 

DT 99.47% 99.69% 99.79% 99.63% 

Shafiq, M.; 

et al. [88] 

decision 

tree 

Multi 99.99% 97.10% 94.27% 98.95% Centralized No 

Naive 

Bayes 

97.49% 56.28% 57.95% 98.44% 

Random 

Forest 

99.98% 95.05% 91.37% 99.99% 

SVM 97.80% 57.89% 43.24% 98.48% 

Huong, 

T.T.; et al. 

[120] 

ANN Multi 99.9% --- --- --- Centralized No 

92.5% --- --- --- Federated 

Preuveneers 

et al.  [121] 

Auto-

encoder 

Binary  97% --- --- --- Distributed   Yes  

Roberto et 

al. [90] 

LUCID Binary  98.88% --- --- 98.89% Distributed  No  

Latif et al. 

[91] 

RaNN Binary  99.2% 99.11% 99.13% 99.20% Distributed  No  

Nguyen et 

al. [100] 

GRU Binary  95.6% --- --- --- Federated  No  

Man et al. 

[104] 

CNN Multi  99.76% --- --- --- Federated  No  
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Conclusion 

The demand to secure IoT systems has generated a variety of creative IDS design solutions. This paper has 

undertaken a thorough analysis of IDS that makes use of ML, DL, edge and cloud computing. There was an 

illustration of a taxonomy and tabular classification of validation techniques, IDS placement schemes, security 

threats, and detection techniques. We have found that there is a significant number of scientific frameworks. The 

evolution of IDS in the real world hasn't been experimentally verified yet, though. There aren't any specified 

standards for certain detection strategies or deployment methodologies to protect IoT systems. Designing a realistic 

NIDS solution that successfully identifies cyber-attacks in realistic IoT systems still needs more work. 

Additionally, most IoT system evaluation methods do not take consideration important metrics like energy usage, 

processing, and storage efficiency in most of the studies. We have found numerous interesting study directions 

through our careful review. First and foremost, future IDS for IoT systems should concentrate on enhancing IDS 

effectiveness; and illustrate how their proposed systems could be implemented in existing IoT infrastructure. We 

are optimistic that this survey will be helpful to researchers in creating IDS for IoT systems as resources and 

guidelines. 
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