Squamous Cell Carcinoma of the Oropharynx and the Effect of Botanicals
Mohammed E. Grawish
Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt.

Abstract
Context: Complementary and alternative medicines are currently being investigated for their usefulness in preventing, inhibiting, and reversing the progression of oropharyngeal squamous cell carcinoma (OSCC). Botanicals have great potential in cancer prevention because of their safety, low cost, and oral bioavailability.
Objective: In this review, potential natural OSCCs' preventive botanicals and their mechanisms of action will be discussed.
Methods: A brief bibliometric overview was conducted to obtain the available information of possible relevance to the issue. To this end, PubMed, Google and Google Scholar were interrogated for articles published in English between January 1, 2000, and December 31, 2010, that discuss botanicals and which could possibly be used in treating OSCC. The search was done to identify reports of botanicals' chemoprevention of OSCC. The study outcomes were evaluated and mechanisms of action were identified whenever possible.
Results: A wide range of such botanicals had been shown to prevent 7, 12-dimethylbenz[a]anthracene or 4-nitroquinoline 1-oxide induced OSCC in animal model systems. However, only a few have been tested for their efficacy in humans. Animal model and cell culture studies have clarified that botanicals act by several mechanisms at various stages of OSCC.
Discussion and Conclusions: By utilizing botanicals demonstrating potential mechanisms for efficacy, it is possible to maximize the chances of favorable outcomes while minimizing discomfort associated with conventional therapies.
Keywords: Carcinogenesis; 7, 12-dimethylbenz[a]anthracene; 4-nitroquinoline 1-oxide; Squamous Cell Carcinoma; Oropharynx; Botanicals Extract; Traditional Chinese Medicine; Monomeric Compounds; Dosage Variation; Bibliometry.

Introduction
Squamous cell carcinoma of the oropharynx (OSCC) has been defined as the cancer of those parts of the human body that are covered by the classifiers C00-C10 (Sankaranarayanan et al., 2006; Wittekind et al., 2010). It is among the most common cancers worldwide, and continues to represent a public health problem (Warnakulasuriya, 2010). Despite advances in therapy, cure rates and survival remain poor (Silverman et al., 2010). OSCC often appears to be preventable and is likely to be related to behavioral and lifestyle factors. Prevention of OSCC therefore remains the goal to reduce the impact of this disease (Day et al., 2003; Saunders & Wallace, 2010).

The use of dietary supplements, especially botanicals, or parts of them such as extracts or seeds as medicines predates recorded history and may be seen as a forerunner to modern medicine (Nobili et al., 2009). Technological advancement has facilitated the delivery of breakthrough bioactive compounds of botanicals with potency more or less comparable to those of conventional drugs (Rosenbloom et al., 2011). Also their low cost, (per-) oral bioavailability, and assumed safety at pharmacologically relevant concentrations have tremendous appeal. As a result, some women for example use herbal remedies during pregnancy (Low Dog, 2009). Phytochemicals have been evaluated for cancer chemoprevention and anti-cancer...
properties, increasingly throughout the course of the past decade (Khan et al., 2008; Baskar et al., 2010; Gullett et al., 2010; Syed & Mukhtar, 2011), and interestingly, some of these botanicals were among the top 10 ingredients in "anti-aging" creams (Cronin & Draelos, 2010). This and previous reports (Svendsen et al., 1994; Kiyono, 2007; Longo et al., 2008; Herranz et al., 2010; Donate & Blasco, 2011) suggest that cancer chemopreventive agents and/or anti-ageing drugs may have something in common.

Methods

Google (Giglia, 2008; Kingsley et al., 2011), PubMed (Roberts, 2001) and Google Scholar (Walters, 2009) were interrogated to identify scientific literature of relevance to this area of research. Information on the role of botanicals in chemoprevention of OSCC published between January 1, 2000, and December 31, 2010 were analysed.

Results

Searching the different databases revealed that there are certain parts of trees and shrubs have chemopreventive effect against OSCC such as olive tree leaves; neem tree leaves, flowers and fruits; seaside cleroedendron shrub leaves; ashwagahanda shrub roots; portia tree barks and certain specific algae. Common foods, some Chinese medicinal plants and some monomeric compounds also have a beneficial effect against OSCC.

1. Trees and Shrubs

1.1. Olive Tree Leaves

The leaves of the olive tree (Olea europaea L; NCBI Taxonomy ID: 4146) are well known for their traditional anti-diabetic and anti-hypertensive herbal drug (Sato et al., 2007). Extracts rich in oleuropein (CAS no: 32619-42-4, 3 mg/kg body weight; bw) inhibited–carcinogenesis in the oropharynx of rattus norvegicus (NCBI Taxonomy ID: 10116), type Fischer (F344), after inductive treatment with 4-NQO (CAS no: 56-57-5) (Grawish et al., 2010).

1.2. Neem Tree Leaves, Flowers and Fruits

Neem (Azadirachta indica; NCBI Taxonomy ID: 124943) is a versatile tree of the Meliaceae family (NCBI Taxonomy ID: 43707). The antiproliferative activity of neem tree flowers against some cancer cell lines has been established (Roy et al., 2007). Ethanol neem leaf extract (200 mg/kg bw) and neem leaf fractions (1, 10, 100 mg/kg bw, in a dose dependent manner, ddm) have been reported to inhibit the development of OSCC in the buccal pouch of hamsters (NCBI Taxonomy ID: 10036) after application of DMBA (CAS no: 57-97-6) (Subapriya et al., 2005; Manikandan et al., 2008). Apoptosis of neem treated hamsters was mediated by the expression of Bim, Bcl-2 (UniProt: Q687E0), caspase 3 (UniProt: Q60431), and caspase 8 (Subapriya et al., 2005). The neem fruit limonoids azadirachtin (CAS no: 11141-17-6; 10, 100 µg/kg bw) and neem flower nimbolide (CAS no: 25990-37-8; 10, 100 µg/kg bw) appeared to block cell proliferative activity and induce apoptosis. Comparatively, nimbolide is a more potent antioxidant and cancer chemopreventive agent (Priyadarsini et al., 2009; Harish Kumar et al., 2010).

1.3. Seaside Clerodendron Shrub Leaves

Seaside Clerodendron (Clerodendrum inerme; NCBI Taxonomy ID: 49994) is an evergreen sprawling shrub 1-1.8 m tall, which has two sterol constituents (Pandey et al., 2003). It was found that peroral administration of Clerodendrum inerme aqueous leaf extract (500 mg/kg bw) reduced the incidence and size of DMBA-induced OSCC in the HBP (Manoharan et al., 2006).

1.4. Ashwagahanda Shrub Roots

Ashwagahanda (Withania somnifera; NCBI Taxonomy ID: 126910) root extracts are commonly used in the Indian (Hindu) traditional medicine practice Ayurveda as a general tonic for overall health and as a remedy for a variety of ailments (Kataria et al., 2011). Withaferin-A (CAS no: 5119-48-2; 20 mg/kg bw), a steroidal lactone isolated from Withania somnifera, appeared to
prevent alterations of both p53 (UniProt: Q00366) and Bel-2 and decreases micronucleus formation in the bone marrow when administered to DMBA-painted hamsters (Bargagna-Mohan et al., 2007; Panjamurthy et al., 2008). Withaferin-A prevented tumor formation and helped maintain erythrocyte integrity during DMBA induction of OSCC (Manoharan et al., 2008).

1.5. Portia Tree Barks
The Portia tree or Thespesia populnea Soland ex Correa (NCBI Taxonomy ID: 3638; Family: Malvaceae; NCBI Taxonomy ID: 3629) is a large tropical tree found in coastal forests and is native to India (Ilavarasan et al., 2003). The extract from the Thespesia populnea bark (300 mg/kg bw) has been reported to demonstrate cancer preventive efficacy in HBP contaminated with DMBA (Dhanarasu et al., 2010).

1.6. Algae
Spirulina (NCBI Taxonomy ID: 1154) is a blue-green filamentous alga (NCBI Taxonomy ID: 1117) (Hayashi et al., 1996). Spirulina platensis (Arthrospira platensis; NCBI Taxonomy ID: 118562; 10 mg/day) inhibited dysplastic changes occurring in the HBP mucosa and had a long-term cancer regression role on DMBA-induced OSCC (Grawish, 2008; Grawish et al., 2010).

2. Common Food
2.1. Black Raspberries
Black raspberries (Rubus occidentalis; NCBI Taxonomy ID: 75079) contain many compounds with both in vitro and in vivo preventive properties (Rodrigo et al., 2006). The lyophilized black raspberries (5% and 10%) have preventive properties and have been found to inhibit tumor formation in the oral cavity (Casto et al., 2002). The growth inhibitory effects on dysplastic human cells from the oropharynx were attributed to certain components in black raspberries that target specific signaling pathways regulating the progression of the cell cycle (Han et al., 2005). Ethanol extract (10, 50, 100 µg/ml, ddm) of freeze-dried black raspberries was a promising agent for prevention of oropharyngeal epithelial dysphasia (Rodrigo et al., 2006). Application of black raspberry bioadhesive gel (10% w/w gel or 0.5 g of 10% gel) containing anthocyanins (CAS no: 15067-77-7) represented a promising strategy for human OSCC chemoprevention by modulation of gene expression and reduction of cyclooxygenase 2 (UniProt: Q9NNY7) protein (Mallery et al., 2007; Mallery et al., 2008).

2.2. Cranberry and Grape Seeds
Cranberries (Vaccinium macrocarpon; NCBI Taxonomy ID: 13750) are the fruit from the evergreen dwarf shrubs which can be used by pregnant or breastfeeding women as a preventive agent of urinary tract infections (Dugoua et al., 2008). Grapes (Vitis vinifera; NCBI Taxonomy ID: 29760) are considered the world's largest fruit crops, with an approximate annual production of 58 million metric tons (Li et al., 2004). Grape seeds are rich sources of monomeric phenolic compounds, such as catechins (CAS no: 7295-85-4), epicatechin (CAS no: 490-46-0) and epicatechin-3-O-gallate (CAS no: 1257-08-5) and dimeric, trimeric and tetrameric procyanidins (CAS no: 4852-22-6) which act as antimutagenic and antiviral agents (Stanković et al., 2008). Grape seed proanthocyanidins (CAS no: 84929-27-1) differ from cranberry proanthocyanidins in that they are more likely to contain galloylated flavan-3-ols, and the monomers are primarily B linked (Hayasaka et al., 2003). Extracts of grape seed were more cytotoxic than grape peel extracts and 70% methanol extracts of grape seed selectively killed two human oropharyngeal tumor cell lines (Shirataki et al., 2000). Cranberry and grape seed extracts (both 10 to 80 µg/ml, ddm) inhibited the proliferation of OSCC cell lines (CAL27 and SCC25) in a dose-dependent manner (Chatelain et al., 2010).

2.3. Tomato
The tomato is the edible fruit of the plant Solanum lycopersicum (NCBI Taxonomy ID: 4081) (Luengwilai et al., 2010). Combined administration of tomato (0.25 mg lycopene/ml; CAS no: 502-65-8 ;) and garlic
Garlic (Allium sativum L. fam. Allioideae; Taxonomy ID: 40553) is one of the most commonly used herbal remedies and food spices. Alliinase (UniProt: D2CXF2), alliin (sulfur-containing compounds, CAS no: 556-27-4), and allicin (compounds produced enzymatically from alliin, CAS no: 539-86-6) are the main constituents of garlic (Aviello et al., 2009). Administration of S-allylcysteine (CAS no: 21593-77-1; 200 mg/kg bw) or aqueous garlic extract (250 mg/kg bw) suppressed DMBA-induced oropharyngeal carcinogenesis as revealed by the absence of neoplasms, induction of transglutaminase and inhibition of Bcl-2 expression. It also restored retinoic acid receptor-beta mRNA (UniProt: Q8VHB7) expression to normal (Balasenthil et al., 2000; Balasenthil et al., 2001; Balasenthil et al., 2002; Balasenthil et al., 2003). S-allylcysteine (0, 2, 5 10, 20 mM, ddm) effectively inhibited the proliferation, upregulated the expression of E-cadherin (UniProt: Q9UII7) molecule and stabilized the E-cadherin/beta-catenin (UniProt: P35222) adherent junction complex in human OSCC cell lines (Tang et al., 2009). Altered cytokeratin expression and enhanced quantities of circulatory antioxidants were suggested to be associated with garlic-mediated cancer chemoprevention (250 mg/kg bw) of experimental OSCC in the HBP (Balasenthil et al., 2000; Balasenthil et al., 2002).

In 4NQO-induced rat tongue carcinogenesis, garlic (25 mg/ml) might execute its preventive effects by modulating lipid peroxidation and enhancing the levels of GSH, GPx (UniProt: P04041) and GST (UniProt: Q6LDP3) (Balasenthil et al., 2001).

2.5. Ginger

Ginger (Zingiber officinale; NCBI Taxonomy ID: 94328) is one of the plants’ family is from the plant family Zingiberaceae (NCBI Taxonomy ID: 4642) which includes cardamom (NCBI Taxonomy ID: 105181) and turmeric. The active constituent is gingerol (White, 2007). When 400 mg of ginger powder is added to laboratory chow it is presumed to have a preventive effect on oropharyngeal carcinogenesis through induction of apoptosis and suppression of tumor growth and proliferation (Khater, 2010).

2.6. Pepper

Pepper, contains Piperine and capsaicin and its biological activities especially anti-cancer activity is widely studied. Piperine (CAS no: 94-62-2) extracted from Piper longum (long pepper; NCBI Taxonomy ID: 49511) and Piper nigrum (black pepper; NCBI Taxonomy ID: 13216) is an active alkaloid, consumed by a large number of individuals worldwide (Koul & Kapil, 1993). Piperine (50 mg/kg bw) had been suggested to execute Piperine (50 mg/kg bw) has been proposed to have a
chemopreventive effect on DMBA-mediated induction of OSCC in the HBP (Krishnakumar et al., 2009). The modifying effects of dietary capsaicin (CAS no: 404-86-4; ATC/DDD: N01BX04; active component of chili peppers; NCBI Taxonomy ID: 4073; 500 ppm, w/w) and rotenone (CAS no: 83-79-4; 500 ppm) on the initiation or promotion phase of 4-NQO-induced rat tongue carcinogenesis, reduced the frequency of OSCC (Tanaka et al., 2002).

2.7. Green, Black and Yerba Mate Tea

Tea, from the plant Camellia sinensis L. (NCBI Taxonomy ID: 4442), is one of the most common beverages consumed worldwide and is generally consumed in its green, black, or oolong form. The main tea extract components are tea polyphenols and tea polysaccharides (Monobe et al., 2010). Green tea extract (GTE, 0.6% solution in tap water) and curcumin (CAS no: 458-37-7; 10 µmol) (Li et al., 2002) had antiproliferative effects by apoptosis induction, cell proliferation inhibition and angiogenesis. It has been proposed that green tea polyphenols (CAS no: 84650-60-2; 200 mg/kg bw/day) may act as a detoxifying agent, altering the expression of glycoconjugates and immunological markers (Srinivasan et al., 2008), modulating lipid peroxidation and enhancing antioxidant ability in an OSCC model. The recent effect was also associated with black tea polyphenols (BTP, CAS no: 84650-60-2; 0.05% Polyphenon) (Chandran Mohan et al., 2005).

Epigallocatechin-3-gallate (CAS no: 989-51-5; 0 to 60 µM or 5, 10, 20, 50 µM, ddm) of green tea decreased the expression of matrix metalloproteinase (MMP) 2 (UniProt: P08253) and 9 (UniProt: P14780), urokinase plasminogen activator (UPA; UniProt: P00749) and inhibited the invasion and migration of carcinoma HSC-2 cells and normal HGF-2 fibroblasts cells (Babich et al., 2005; Ho et al., 2007; Kato et al., 2008). A phase II randomized, placebo-controlled trial of GTE (500, 750, or 1,000 mg/m², ddm) concluded that GTE may suppress oropharyngeal premalignant changes, in part through reducing angiogenic stimulus (Tsao et al., 2009).

Black tea was confirmed to have a beneficial effect on OLP (Halder et al., 2005). The BTP (30 to 40 mg/kg bw) exerted its preventive effects by inhibiting cell proliferation, modulating the oxidant-antioxidant status as well as markers of cell proliferation, cell survival, tumor infiltration, angiogenesis, apoptosis and xenobiotic-metabolizing enzymes (Letchoumy et al., 2006; Letchoumy et al 2007; Vidjaya Letchoumy et al., 2008). The dietary administration of solitary or combined bovine lactoferrin (UniProt: Q6LB7; 0.2%) and/or BTP (0.05% Polyphenon-B) has been reported to reduce tumor incidence in the hamster buccal pouch (HBP) (Chandra Mohan et al., 2006). Yerba mate tea (236 to 490 mg equiv of chlorogenic/g of dry leaves) is rich in phenolic constituents and can inhibit OSCC proliferation, topoisomerase 1 (UniProt: P11387), topoisomerase 2 (UniProt: P11388) (Gonzalez de Mejia et al., 2005).

3. Medicinal Plants (Traditional Chinese Medicine)

Levamisole (CAS no: 14769-73-4; ATC/DDD: P02CE01; antihelminthic drug) and/or Chinese medicinal herbs (root of Astragalus; NCBI Taxonomy ID: 20400; 12 g/day; fruit of Ligustrum, NCBI Taxonomy ID: 104487; 9 g/day; and fruit of Ziziphi jujuba; NCBI Taxonomy ID: 157914; 9 g/day) can modulate the level of the serum SCC associated antigen. For OLP patients, the combination therapy was superior to the single therapy of levamisole or of Chinese medicinal herbs (Sun & Chiang, 2001). Chinese herbal extracts from Drynaria bonii (NCBI Taxonomy ID: 272673), Angelica sinensis (NCBI Taxonomy ID: 165353) and Cornus officinalis Sieb (NCBI Taxonomy ID: 16906) were investigated for their antitumor potential on human OSCC cell lines (HSC-2 and NA) and the data demonstrated several unique antitumor properties of Drynaria bonii (Chu et al., 2009).
Ching wayssan (0, 10, 25, 50, 75 and 100 µl/ml, ddm; tab 1) induced apoptosis via a Bax (UniProt: Q07812)-dependent pathway in human OSCC cell lines (OC2 and TSCCa) (Liao et al., 2005). Shenyang (1,026 mg or 256.5 mg/100 g bw) had immune modulatory effects in rattus norvegicus, Sprague-Dawley type, with 4-NQO-induced OSCC (Jiang et al., 2007). Zeng sheng ping (6 g/kg bw/day by gavage) has been reported to prevent OSCC in humans with mitochondrial signaling pathway (Lee et al., 2010; Chen et al., 2010). Shikonin (CAS no: 1135-24-6), is found in the brans of grasses such as wheat (Triticum aestivum; NCBI). The chemical structures of curcumin and other compounds are well known. Curcumin (0.1, 1.0, 10.0 µM, ddm) was considerably more potent than genistein (CAS no: 446-72-0) isoflavone and quercetin (CAS no: 117-39-5) flavonoid, but cisplatin (ATC/DDD: L01XA01; a platinum-based chemotherapy drug; CAS no: 15663-27-1) was five times more potent than curcumin in inhibition of growth and DNA synthesis in a cell line (SCC-25) in vitro (Elattar & Virji, 2000). In metabolism studies, curcumin (1, 5, 10, 25, and 50 µM, ddm) inhibited P-450 1A1 (UniProt: P04798)-mediated benzo(a)pyrene diol (CAS no: 51689-89-5) bioactivation in both OSCC lines and intact oropharyngeal mucosa (Rinaldi et al., 2002). Curcumin (0.1 µM to 1mM) may also induce reactive oxygen species generation and early apoptotic changes in human gingival fibroblasts and human submandibular gland carcinoma cells (Atsumi et al., 2006). It was reported that peroral administration of curcumin (80 mg/kg bw) and piperine (CAS no: 94-62-2; 50 mg/kg bw) to DMBA-painted hamsters helped to prevent the formation of OSCC (Manoharan et al., 2009). Dietary turmeric (1%) augmented apoptosis and decreased cell proliferation in DMBA-treated animals, which was reflected by decreased tumor burden, multiplicity and enhanced latency period (Garg et al., 2008).

4.1. Curcumin
Curcumin (diferuloylmethane), a polyphenol from the plant Curcuma longa (NCBI Taxonomy ID: 136217), traditionally called turmeric, is used for cancer chemoprevention and treatment (Aggarwal et al., 2000). The chemical structures of curcumin and other compounds are well known. Curcumin (0.1, 1.0, 10.0 µM, ddm) was considerably more potent than genistein (CAS no: 446-72-0) isoflavone and quercetin (CAS no: 117-39-5) flavonoid, but cisplatin (ATC/DDD: L01XA01; a platinum-based chemotherapy drug; CAS no: 15663-27-1) was five times more potent than curcumin in inhibition of growth and DNA synthesis in a cell line (SCC-25) in vitro (Elattar & Virji, 2000). In metabolism studies, curcumin (1, 5, 10, 25, and 50 µM, ddm) inhibited P-450 1A1 (UniProt: P04798)-mediated benzo(a)pyrene diol (CAS no: 51689-89-5) bioactivation in both OSCC lines and intact oropharyngeal mucosa (Rinaldi et al., 2002). Curcumin (0.1 µM to 1mM) may also induce reactive oxygen species generation and early apoptotic changes in human gingival fibroblasts and human submandibular gland carcinoma cells (Atsumi et al., 2006). It was reported that peroral administration of curcumin (80 mg/kg bw) and piperine (CAS no: 94-62-2; 50 mg/kg bw) to DMBA-painted hamsters helped to prevent the formation of OSCC (Manoharan et al., 2009).

Dietary turmeric (1%) augmented apoptosis and decreased cell proliferation in DMBA-treated animals, which was reflected by decreased tumor burden, multiplicity and enhanced latency period (Garg et al., 2008). In highly invasive human YD-10B OSCC cell lines, curcumin inhibited cell proliferation and motility through decreased expression of MMP2 and 9, UPA and UPA receptor (UniProt: Q03405) (Shin et al., 2010).

4.2. Ferulic Acid
Ferulic acid (hydroxycinnamic acid, CAS no: 1135-24-6), is found in the brans of grasses such as wheat (Triticum aestivum; NCBI).
4.5. Flavonoids

Many flavonoids show anti-tumorigenic properties on various types of tumors. One particular natural flavonoid compound, luteolin (CAS no: 491-70-3) could be an effective chemotherapeutic agent for the treatment of oral squamous cell carcinoma. Luteolin (5 or 10 µM for 5 and 7 days) reduced the viability of SCC-4 cells and induced apoptosis by decreasing the expression of cyclin-dependent kinase (CDKs), cyclins, and phosphor-retinoblastoma (p-Rb) anti-apoptotic protein (Yang et al., 2008). Moreover, prenylated flavonoids significantly enhanced the cytotoxic activity against two human oral tumor cell lines (HSC-2, HSG) (Fukai et al., 2000; Shirakata et al., 2001).

6. A Few Notes on Dosages

Additional searches were conducted to compare the dosages previously discussed with those suggested for humans. The following databases have been interrogated: ABOUTHERBS, a web site provided by the Memorial Sloan Kettering Cancer Center (MSKCC Integrative Medicine Service) (Cassileth et al., 2009), HERBS AT A GLANCE, and the COMPLEMENTARY AND ALTERNATIVE MEDICINE (CAM) subset of PUBMED both of which have been established by the National Center for Complementary and Alternative Medicine (NCCAM) (Marcus & Grollman, 2006).

This part of the study revealed that the current body of literature contains only a few peer reviewed articles on effective clinical dosages in humans specified by good scientific practice and experimental design. At least in part this may be attributable to the fact that botanicals come in a variety of dosage forms such as teas, creams, gels, capsules or tablets, and/or that they can be formulated for various types of drug delivery, supporting extended, sustained or other modes of drug release. Different dosages can therefore be readily extracted as discussed in the body of literature (tab 2). Comparative studies are needed to learn more about dose-response relationships in this context and develop

Delta University Scientific Journal
Volume 2 Issue September (2019)
sufficient ontologies and mathematical models.

Conclusion

In the last decade (2000-2010), there were numerous reports from China, Japan, India, Europe, the Middle East and the United States of America concerning specific botanicals and their extracts' chemopreventive activity on OSCC. Botanicals showed gratifying effects on OSCC. More systematic studies are however warranted for sufficient ontology population and mathematical modeling.

References

Combinatorial antigenotoxic and anticarcinogenic effects of tomato and garlic through modulation of xenobioticmetabolizing enzymes during hamster buccal pouch carcinogenesis. Nutrition, 21, 726-731.

Delta University for Science and Technology
Coastal International Road, Mansoura, Gamasa City, Dakahlia, Egypt
E-mail: dusj@deltauniv.edu.eg
Journal homepage: www.deltauniv.edu.eg/dusj

Leukoplakia and angiopoiesis